Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence‐based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low‐cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene‐diimide (PDI), which can be prepared in a few minutes by a one‐pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV– Vis absorption, steady‐state and time‐resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide‐field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail.

Caponetti V., Mavridi-printezi Alexandra., Cingolani M., Rampazzo E., Genovese D., Prodi L., et al. (2021). A selective ratiometric fluorescent probe for no‐wash detection of PVC microplastic. POLYMERS, 13(10), 1588-1602 [10.3390/polym13101588].

A selective ratiometric fluorescent probe for no‐wash detection of PVC microplastic

Caponetti V.;Mavridi-printezi Alexandra.;Cingolani M.;Rampazzo E.;Genovese D.;Prodi L.;Fabbri D.;Montalti M.
2021

Abstract

Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence‐based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low‐cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene‐diimide (PDI), which can be prepared in a few minutes by a one‐pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV– Vis absorption, steady‐state and time‐resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide‐field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail.
2021
Caponetti V., Mavridi-printezi Alexandra., Cingolani M., Rampazzo E., Genovese D., Prodi L., et al. (2021). A selective ratiometric fluorescent probe for no‐wash detection of PVC microplastic. POLYMERS, 13(10), 1588-1602 [10.3390/polym13101588].
Caponetti V.; Mavridi-printezi Alexandra.; Cingolani M.; Rampazzo E.; Genovese D.; Prodi L.; Fabbri D.; Montalti M.
File in questo prodotto:
File Dimensione Formato  
polymers-13-01588-v2_compressed.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 365.54 kB
Formato Adobe PDF
365.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/862075
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 12
social impact