Objectives: To evaluate aortic distensibility and pulse waveform patterns associated with the ascending aortic aneurysm, and to analyze the postoperative and mid-term hemodynamic changes induced by prosthetic replacement of the ascending aorta. Methods: Central blood pressure waves were recorded at the carotid artery level by means of a validated transcutaneous arterial tonometer in 30 patients undergoing prosthetic replacement of ascending aortic aneurysm and in 30 control patients. Measurements were obtained the day before surgery and 5 to 7 days and 16 to 20 months after surgery. Results: The ascending aortic aneurysm was associated with a less steep slope of early systolic phase of the pressure curve (pulsus tardus) compared with a control group (0.54 ± 0.18 mm Hg/ms vs 0.69 ± 0.26 mm Hg/ms; P = .011). Replacing the ascending aorta with a noncompliant vascular prosthesis steepened the pulse pressure slope during the early systolic phase in the postoperative period (0.77 ± .29 mm Hg/ms), providing values comparable with those of the control group in the mid-term (0.67 ± .20 mm Hg/ms). No change in aortic stiffness was found either postoperatively or in the mid-term after ascending aorta surgical replacement (carotid-femoral pulse wave velocity: preoperative, 9.0 ± 2.6 m/s; postoperative, 9.0 ± 2.9 m/s; mid-term postoperative, 9.3 ± 2.8 m/s). Conclusions: This study does not confirm the assumption that substitution of the viscoelastic ascending aorta with a rigid prosthesis can cause serious hemodynamic alterations downstream, because we did not observe a worsening of global aortic distensibility after insertion of a rigid prosthetic aorta. The ascending aortic aneurysm is associated with a pulsus tardus.

Salvi L., Alfonsi J., Grillo A., Pini A., Soranna D., Zambon A., et al. (2020). Postoperative and mid-term hemodynamic changes after replacement of the ascending aorta. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, ----, 1-11 [10.1016/j.jtcvs.2020.05.031].

Postoperative and mid-term hemodynamic changes after replacement of the ascending aorta

Alfonsi J.;Pacini D.;Di Bartolomeo R.;
2020

Abstract

Objectives: To evaluate aortic distensibility and pulse waveform patterns associated with the ascending aortic aneurysm, and to analyze the postoperative and mid-term hemodynamic changes induced by prosthetic replacement of the ascending aorta. Methods: Central blood pressure waves were recorded at the carotid artery level by means of a validated transcutaneous arterial tonometer in 30 patients undergoing prosthetic replacement of ascending aortic aneurysm and in 30 control patients. Measurements were obtained the day before surgery and 5 to 7 days and 16 to 20 months after surgery. Results: The ascending aortic aneurysm was associated with a less steep slope of early systolic phase of the pressure curve (pulsus tardus) compared with a control group (0.54 ± 0.18 mm Hg/ms vs 0.69 ± 0.26 mm Hg/ms; P = .011). Replacing the ascending aorta with a noncompliant vascular prosthesis steepened the pulse pressure slope during the early systolic phase in the postoperative period (0.77 ± .29 mm Hg/ms), providing values comparable with those of the control group in the mid-term (0.67 ± .20 mm Hg/ms). No change in aortic stiffness was found either postoperatively or in the mid-term after ascending aorta surgical replacement (carotid-femoral pulse wave velocity: preoperative, 9.0 ± 2.6 m/s; postoperative, 9.0 ± 2.9 m/s; mid-term postoperative, 9.3 ± 2.8 m/s). Conclusions: This study does not confirm the assumption that substitution of the viscoelastic ascending aorta with a rigid prosthesis can cause serious hemodynamic alterations downstream, because we did not observe a worsening of global aortic distensibility after insertion of a rigid prosthetic aorta. The ascending aortic aneurysm is associated with a pulsus tardus.
2020
Salvi L., Alfonsi J., Grillo A., Pini A., Soranna D., Zambon A., et al. (2020). Postoperative and mid-term hemodynamic changes after replacement of the ascending aorta. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, ----, 1-11 [10.1016/j.jtcvs.2020.05.031].
Salvi L.; Alfonsi J.; Grillo A.; Pini A.; Soranna D.; Zambon A.; Pacini D.; Di Bartolomeo R.; Salvi P.; Parati G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/860237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact