Event cameras are biologically-inspired sensors that gather the temporal evolution of the scene. They capture pixel-wise brightness variations and output a corresponding stream of asynchronous events. Despite having multiple advantages with respect to conventional cameras, their use is limited due to the scarce compatibility of asynchronous event streams with traditional data processing and vision algorithms. In this regard, we present a framework that synthesizes RGB frames from the output stream of an event camera and an initial or a periodic set of color key-frames. The deep learning-based frame synthesis framework consists of an adversarial image-to-image architecture and a recurrent module. Two public event-based datasets, DDD17 and MVSEC, are used to obtain qualitative and quantitative per-pixel and perceptual results. In addition, we converted into event frames two additional well-known datasets, namely Kitti and Cityscapes, in order to present semantic results, in terms of object detection and semantic segmentation accuracy. Extensive experimental evaluation confirms the quality and the capability of the proposed approach of synthesizing frame sequences from color key-frames and sequences of intermediate events.

Video Frame Synthesis combining Conventional and Event Cameras

Borghi G;
In corso di stampa

Abstract

Event cameras are biologically-inspired sensors that gather the temporal evolution of the scene. They capture pixel-wise brightness variations and output a corresponding stream of asynchronous events. Despite having multiple advantages with respect to conventional cameras, their use is limited due to the scarce compatibility of asynchronous event streams with traditional data processing and vision algorithms. In this regard, we present a framework that synthesizes RGB frames from the output stream of an event camera and an initial or a periodic set of color key-frames. The deep learning-based frame synthesis framework consists of an adversarial image-to-image architecture and a recurrent module. Two public event-based datasets, DDD17 and MVSEC, are used to obtain qualitative and quantitative per-pixel and perceptual results. In addition, we converted into event frames two additional well-known datasets, namely Kitti and Cityscapes, in order to present semantic results, in terms of object detection and semantic segmentation accuracy. Extensive experimental evaluation confirms the quality and the capability of the proposed approach of synthesizing frame sequences from color key-frames and sequences of intermediate events.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/859655
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact