Can faces acquired by low-cost depth sensors be useful to see some characteristic details of the faces? Typically the answer is not. However, new deep architectures can generate RGB images from data acquired in a different modality, such as depth data. In this paper we propose a new Deterministic Conditional GAN, trained on annotated RGB-D face datasets, effective for a face-to-face translation from depth to RGB. Although the network cannot reconstruct the exact somatic features for unknown individual faces, it is capable to reconstruct plausible faces; their appearance is accurate enough to be used in many pattern recognition tasks. In fact, we test the network capability to hallucinate with some Perceptual Probes, as for instance face aspect classification or landmark detection. Depth face can be used in spite of the correspondent RGB images, that often are not available for darkness of difficult luminance conditions. Experimental results are very promising and are as far as better than previous proposed approaches: this domain translation can constitute a new way to exploit depth data in new future applications.

Domain Translation with Conditional GANs: from Depth to RGB Face-to-Face

BORGHI, GUIDO;Rita Cucchiara
2018

Abstract

Can faces acquired by low-cost depth sensors be useful to see some characteristic details of the faces? Typically the answer is not. However, new deep architectures can generate RGB images from data acquired in a different modality, such as depth data. In this paper we propose a new Deterministic Conditional GAN, trained on annotated RGB-D face datasets, effective for a face-to-face translation from depth to RGB. Although the network cannot reconstruct the exact somatic features for unknown individual faces, it is capable to reconstruct plausible faces; their appearance is accurate enough to be used in many pattern recognition tasks. In fact, we test the network capability to hallucinate with some Perceptual Probes, as for instance face aspect classification or landmark detection. Depth face can be used in spite of the correspondent RGB images, that often are not available for darkness of difficult luminance conditions. Experimental results are very promising and are as far as better than previous proposed approaches: this domain translation can constitute a new way to exploit depth data in new future applications.
Proceedings of the 24th International Conference on Pattern Recognition (ICPR) 2018
0
0
FABBRI, MATTEO; BORGHI, GUIDO; LANZI, FABIO; Roberto Vezzani; Simone Calderara; Rita Cucchiara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/859631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact