A correct and reliable localization of facial landmark enables several applications in many fields, ranging from Human Computer Interaction to video surveillance. For instance, it can provide a valuable input to monitor the driver physical state and attention level in automotive context. In this paper, we tackle the problem of facial landmark localization through a deep approach. The developed system runs in real time and, in particular, is more reliable than state-of-the-art competitors specially in presence of light changes and poor illumination, thanks to the use of depth images as input. We also collected and shared a new realistic dataset inside a car, called MotorMark, to train and test the system. In addition, we exploited the public Eurecom Kinect Face Dataset for the evaluation phase, achieving promising results both in terms of accuracy and computational speed.

Frigieri, E., BORGHI, G., VEZZANI, R., CUCCHIARA, R. (2017). Fast and Accurate Facial Landmark Localization in Depth Images for In-car Applications. Springer [10.1007/978-3-319-68560-1_48].

Fast and Accurate Facial Landmark Localization in Depth Images for In-car Applications

BORGHI, GUIDO;CUCCHIARA, Rita
2017

Abstract

A correct and reliable localization of facial landmark enables several applications in many fields, ranging from Human Computer Interaction to video surveillance. For instance, it can provide a valuable input to monitor the driver physical state and attention level in automotive context. In this paper, we tackle the problem of facial landmark localization through a deep approach. The developed system runs in real time and, in particular, is more reliable than state-of-the-art competitors specially in presence of light changes and poor illumination, thanks to the use of depth images as input. We also collected and shared a new realistic dataset inside a car, called MotorMark, to train and test the system. In addition, we exploited the public Eurecom Kinect Face Dataset for the evaluation phase, achieving promising results both in terms of accuracy and computational speed.
2017
Proceedings of the 19th International Conference on Image Analysis and Processing
539
549
Frigieri, E., BORGHI, G., VEZZANI, R., CUCCHIARA, R. (2017). Fast and Accurate Facial Landmark Localization in Depth Images for In-car Applications. Springer [10.1007/978-3-319-68560-1_48].
Frigieri, Elia; BORGHI, GUIDO; VEZZANI, Roberto; CUCCHIARA, Rita
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/858394
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact