Antidepressants demonstrate modest response rates in the treatment ofmajor depressive disorder (MDD). Despite previous genome-wide association studies(GWAS) of antidepressant treatment response, the underlying genetic factors areunknown. Using prescription data in a population and family-based cohort (GenerationScotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of(a) antidepressant treatment resistance and (b) stages of antidepressant resistanceby inferring antidepressant switching as non-response to treatment. GWAS wereconducted separately for antidepressant treatment resistance in GS:SFHS and theGenome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed(meta-analysis n = 4213, cases = 358). For stagesof antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-setenrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We didnot identify any significant loci, genes or gene sets associated with antidepressanttreatment resistance or stages of resistance. Significant positive geneticcorrelations of antidepressant treatment resistance and stages of resistance withneuroticism, psychological distress, schizotypy and mood disorder traits wereidentified. These findings suggest that larger sample sizes are needed to identifythe genetic architecture of antidepressant treatment response, and thatpopulation-based observational studies may provide a tractable approach to achievingthe necessary statistical power.

Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP / Wigmore E.M.; Hafferty J.D.; Hall L.S.; Howard D.M.; Clarke T.-K.; Fabbri C.; Lewis C.M.; Uher R.; Navrady L.B.; Adams M.J.; Zeng Y.; Campbell A.; Gibson J.; Thomson P.A.; Hayward C.; Smith B.H.; Hocking L.J.; Padmanabhan S.; Deary I.J.; Porteous D.J.; Mors O.; Mattheisen M.; Nicodemus K.K.; McIntosh A.M.. - In: PHARMACOGENOMICS JOURNAL. - ISSN 1470-269X. - STAMPA. - 20:2(2020), pp. 329-341. [10.1038/s41397-019-0067-3]

Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP

Fabbri C.;
2020

Abstract

Antidepressants demonstrate modest response rates in the treatment ofmajor depressive disorder (MDD). Despite previous genome-wide association studies(GWAS) of antidepressant treatment response, the underlying genetic factors areunknown. Using prescription data in a population and family-based cohort (GenerationScotland: Scottish Family Health Study; GS:SFHS), we sought to define a measure of(a) antidepressant treatment resistance and (b) stages of antidepressant resistanceby inferring antidepressant switching as non-response to treatment. GWAS wereconducted separately for antidepressant treatment resistance in GS:SFHS and theGenome-based Therapeutic Drugs for Depression (GENDEP) study and then meta-analysed(meta-analysis n = 4213, cases = 358). For stagesof antidepressant resistance, a GWAS on GS:SFHS only was performed (n = 3452). Additionally, we conducted gene-setenrichment, polygenic risk scoring (PRS) and genetic correlation analysis. We didnot identify any significant loci, genes or gene sets associated with antidepressanttreatment resistance or stages of resistance. Significant positive geneticcorrelations of antidepressant treatment resistance and stages of resistance withneuroticism, psychological distress, schizotypy and mood disorder traits wereidentified. These findings suggest that larger sample sizes are needed to identifythe genetic architecture of antidepressant treatment response, and thatpopulation-based observational studies may provide a tractable approach to achievingthe necessary statistical power.
2020
Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP / Wigmore E.M.; Hafferty J.D.; Hall L.S.; Howard D.M.; Clarke T.-K.; Fabbri C.; Lewis C.M.; Uher R.; Navrady L.B.; Adams M.J.; Zeng Y.; Campbell A.; Gibson J.; Thomson P.A.; Hayward C.; Smith B.H.; Hocking L.J.; Padmanabhan S.; Deary I.J.; Porteous D.J.; Mors O.; Mattheisen M.; Nicodemus K.K.; McIntosh A.M.. - In: PHARMACOGENOMICS JOURNAL. - ISSN 1470-269X. - STAMPA. - 20:2(2020), pp. 329-341. [10.1038/s41397-019-0067-3]
Wigmore E.M.; Hafferty J.D.; Hall L.S.; Howard D.M.; Clarke T.-K.; Fabbri C.; Lewis C.M.; Uher R.; Navrady L.B.; Adams M.J.; Zeng Y.; Campbell A.; Gibson J.; Thomson P.A.; Hayward C.; Smith B.H.; Hocking L.J.; Padmanabhan S.; Deary I.J.; Porteous D.J.; Mors O.; Mattheisen M.; Nicodemus K.K.; McIntosh A.M.
File in questo prodotto:
File Dimensione Formato  
Wigmore_TRD_gwas_TPJ19.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
41397_2019_67_MOESM1_ESM.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 42.35 kB
Formato Microsoft Word XML
42.35 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/858014
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact