We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.
Biagi S., Pinamonti A., Vecchi E. (2022). Sublinear Equations Driven by Hörmander Operators. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(4), 1-27 [10.1007/s12220-021-00854-3].
Sublinear Equations Driven by Hörmander Operators
Vecchi E.
2022
Abstract
We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Biagi_Pinamonti_Vecchi_Sublinear equations driven by Hoermander operators.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
485.93 kB
Formato
Adobe PDF
|
485.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.