We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.

Biagi S., Pinamonti A., Vecchi E. (2022). Sublinear Equations Driven by Hörmander Operators. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(4), 1-27 [10.1007/s12220-021-00854-3].

Sublinear Equations Driven by Hörmander Operators

Vecchi E.
2022

Abstract

We characterize the existence of a unique positive weak solution for a Dirichlet boundary value problem driven by a linear second-order differential operator modeled on Hörmander vector fields, where the right hand side has sublinear growth.
2022
Biagi S., Pinamonti A., Vecchi E. (2022). Sublinear Equations Driven by Hörmander Operators. THE JOURNAL OF GEOMETRIC ANALYSIS, 32(4), 1-27 [10.1007/s12220-021-00854-3].
Biagi S.; Pinamonti A.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
Biagi_Pinamonti_Vecchi_Sublinear equations driven by Hoermander operators.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 485.93 kB
Formato Adobe PDF
485.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/856886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact