In this paper we discuss the tractability of stochastic volatility models for pricing and hedging options with the mean-variance hedging approach. We characterize the variance-optimal measure as the solution of an equation between Doléans exponentials; explicit examples include both models where volatility solves a diffusion equation and models where it follows a jump process. We further discuss the closedness of the space of strategies.

Biagini F, Guasoni P, Pratelli M (2000). Mean-variance hedging for stochastic volatility models. MATHEMATICAL FINANCE, 10(2), 109-123 [10.1111/1467-9965.00084].

Mean-variance hedging for stochastic volatility models

Guasoni P
Co-primo
;
2000

Abstract

In this paper we discuss the tractability of stochastic volatility models for pricing and hedging options with the mean-variance hedging approach. We characterize the variance-optimal measure as the solution of an equation between Doléans exponentials; explicit examples include both models where volatility solves a diffusion equation and models where it follows a jump process. We further discuss the closedness of the space of strategies.
2000
Biagini F, Guasoni P, Pratelli M (2000). Mean-variance hedging for stochastic volatility models. MATHEMATICAL FINANCE, 10(2), 109-123 [10.1111/1467-9965.00084].
Biagini F; Guasoni P; Pratelli M
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/856836
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 33
social impact