In this paper we report the design of a device allowing on-chip optical wireless interconnections, based on transmitting and receiving Optical Phased Arrays (OPA). The proposed device aims at realizing high-bandwidth and power-efficient reconfigurable connections between multiple nodes, e.g. chiplets stacked onto a common silicon interposer in 2.5D manycore systems. The communication through an optical wireless switch is a completely novel approach to overcome the bottleneck of wired communication and to provide flexibility in the network topology configuration. We report the OPA design criteria as well as the results of three-dimensional Finite Difference Time Domain (FDTD) simulations. We exploit the in-plane radiation of simple taper antennas to implement 1×N and N × N switching matrices. The effect of the multipath propagation in the on-chip multi-layered medium is also taken into account.
Calo G., Bellanca G., Barbiroli M., Fuschini F., Serafino G., Bertozzi D., et al. (2021). Design of reconfigurable on-chip wireless interconnections through Optical Phased Arrays. OPTICS EXPRESS, 29(20), 31212-31228 [10.1364/OE.427633].
Design of reconfigurable on-chip wireless interconnections through Optical Phased Arrays
Barbiroli M.;Fuschini F.;
2021
Abstract
In this paper we report the design of a device allowing on-chip optical wireless interconnections, based on transmitting and receiving Optical Phased Arrays (OPA). The proposed device aims at realizing high-bandwidth and power-efficient reconfigurable connections between multiple nodes, e.g. chiplets stacked onto a common silicon interposer in 2.5D manycore systems. The communication through an optical wireless switch is a completely novel approach to overcome the bottleneck of wired communication and to provide flexibility in the network topology configuration. We report the OPA design criteria as well as the results of three-dimensional Finite Difference Time Domain (FDTD) simulations. We exploit the in-plane radiation of simple taper antennas to implement 1×N and N × N switching matrices. The effect of the multipath propagation in the on-chip multi-layered medium is also taken into account.File | Dimensione | Formato | |
---|---|---|---|
oe-29-20-31212.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
5.76 MB
Formato
Adobe PDF
|
5.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.