Context: Next-generation imaging includes positron emission tomography (PET) imaging and whole-body magnetic resonance imaging (wbMRI) including diffusion-weighted imaging. Accurate quantification of oligometastatic disease using next-generation imaging is important to define the role and value of metastasis-directed therapy (MDT). Objective: To perform a review of next-generation imaging modalities in the detection of recurrent oligometastatic hormone-sensitive prostate cancer in men who received prior radical treatment for localized disease. Evidence acquisition: MEDLINE, Scopus, Cochrane Libraries, and Web of Science databases were systematically searched for studies reporting next-generation imaging and oncological outcomes. An expert panel of urologists, radiation oncologists, radiologists, and nuclear medicine physicians performed a nonsystematic review of strengths and limitations of currently available imaging options for detecting the presence and extent of recurrent oligometastatic disease. Evidence synthesis: From 370 articles identified, three clinical trials and 21 observational studies met the following inclusion criteria: metachronous oligometastatic recurrence after radical treatment for prostate cancer, MDT, and hormone-sensitive patients. Androgen deprivation therapy (ADT) was allowed before MDT. Next-generation imaging modalities included PET/computed tomography and/or PET/MRI with the following tracers: choline (n = 1), NaF (n = 1), and prostate-specific membrane antigen (PSMA; n = 1) for clinical trials; choline (n = 7) or PSMA (n = 11) or both (n = 3) for observational studies. The number of metastases ranged from two to five lesions in most studies. In PSMA-based studies, progression-free survival ranged from 19% to 100%, whereas in studies employing choline, progression-free survival ranged from 16% to 93%. Overall, ADT-free survival ranged from 48% to 79%, while local control was reported as 75-100% and prostate-specific antigen response as 23-94%. Among the different PET tracers and wbMRI, PSMA PET is emerging as the most accurate imaging technique in defining the oligometastatic status. Conclusions: PSMA and choline PET contribute to guiding MDT in men with hormone-sensitive oligometastatic prostate cancer. Further studies are warranted to ascertain their role and optimize the timing of imaging for such patients.
Farolfi A, H.B. (2021). Positron Emission Tomography and Whole-body Magnetic Resonance Imaging for Metastasis-directed Therapy in Hormone-sensitive Oligometastatic Prostate Cancer After Primary Radical Treatment: A Systematic Review. EUROPEAN UROLOGY ONCOLOGY, 4, 714-730 [10.1016/j.euo.2021.02.003].
Positron Emission Tomography and Whole-body Magnetic Resonance Imaging for Metastasis-directed Therapy in Hormone-sensitive Oligometastatic Prostate Cancer After Primary Radical Treatment: A Systematic Review.
Farolfi A;Fanti S.
2021
Abstract
Context: Next-generation imaging includes positron emission tomography (PET) imaging and whole-body magnetic resonance imaging (wbMRI) including diffusion-weighted imaging. Accurate quantification of oligometastatic disease using next-generation imaging is important to define the role and value of metastasis-directed therapy (MDT). Objective: To perform a review of next-generation imaging modalities in the detection of recurrent oligometastatic hormone-sensitive prostate cancer in men who received prior radical treatment for localized disease. Evidence acquisition: MEDLINE, Scopus, Cochrane Libraries, and Web of Science databases were systematically searched for studies reporting next-generation imaging and oncological outcomes. An expert panel of urologists, radiation oncologists, radiologists, and nuclear medicine physicians performed a nonsystematic review of strengths and limitations of currently available imaging options for detecting the presence and extent of recurrent oligometastatic disease. Evidence synthesis: From 370 articles identified, three clinical trials and 21 observational studies met the following inclusion criteria: metachronous oligometastatic recurrence after radical treatment for prostate cancer, MDT, and hormone-sensitive patients. Androgen deprivation therapy (ADT) was allowed before MDT. Next-generation imaging modalities included PET/computed tomography and/or PET/MRI with the following tracers: choline (n = 1), NaF (n = 1), and prostate-specific membrane antigen (PSMA; n = 1) for clinical trials; choline (n = 7) or PSMA (n = 11) or both (n = 3) for observational studies. The number of metastases ranged from two to five lesions in most studies. In PSMA-based studies, progression-free survival ranged from 19% to 100%, whereas in studies employing choline, progression-free survival ranged from 16% to 93%. Overall, ADT-free survival ranged from 48% to 79%, while local control was reported as 75-100% and prostate-specific antigen response as 23-94%. Among the different PET tracers and wbMRI, PSMA PET is emerging as the most accurate imaging technique in defining the oligometastatic status. Conclusions: PSMA and choline PET contribute to guiding MDT in men with hormone-sensitive oligometastatic prostate cancer. Further studies are warranted to ascertain their role and optimize the timing of imaging for such patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.