We study the general problem of an agent wishing to minimize the risk of a position at a fixed date. The agent trades in a market with a risky asset, with incomplete information, proportional transaction costs, and possibly constraints on strategies. In particular, this framework includes the problems of hedging contingent claims and maximizing utility from wealth. We obtain a minimization problem on a space of predictable processes with finite variation. Borrowing a technique from Calculus of Variation, on this space we look for a convergence which makes minimizing sequences relatively compact, and risk lower semicontinuous. For a class of convex decreasing risk functionals, we show the existence of optimal strategies. Examples include the problems of shortfall minimization, utility maximization, and minimization of coherent risk measures.

Guasoni P (2002). Risk minimization under transaction costs. FINANCE AND STOCHASTICS, 6(1), 91-113 [10.1007/s780-002-8402-0].

Risk minimization under transaction costs

Guasoni P
2002

Abstract

We study the general problem of an agent wishing to minimize the risk of a position at a fixed date. The agent trades in a market with a risky asset, with incomplete information, proportional transaction costs, and possibly constraints on strategies. In particular, this framework includes the problems of hedging contingent claims and maximizing utility from wealth. We obtain a minimization problem on a space of predictable processes with finite variation. Borrowing a technique from Calculus of Variation, on this space we look for a convergence which makes minimizing sequences relatively compact, and risk lower semicontinuous. For a class of convex decreasing risk functionals, we show the existence of optimal strategies. Examples include the problems of shortfall minimization, utility maximization, and minimization of coherent risk measures.
2002
Guasoni P (2002). Risk minimization under transaction costs. FINANCE AND STOCHASTICS, 6(1), 91-113 [10.1007/s780-002-8402-0].
Guasoni P
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/855672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact