A semiparametric finite mixture of regression models is defined, with concomitant information assumed to influence both the component weights and the conditional means. The contribution of a concomitant variable is flexibly specified as a smooth function represented by cubic splines. A Bayesian estimation procedure is proposed and an empirical analysis of the baseball salaries dataset is illustrated.

Marco Berrettini, Giuliano Galimberti, Saverio Ranciati (2021). Semiparametric finite mixture of regression models with Bayesian P-splines. Firenze : Firenze University Press.

Semiparametric finite mixture of regression models with Bayesian P-splines

Marco Berrettini;Giuliano Galimberti;Saverio Ranciati
2021

Abstract

A semiparametric finite mixture of regression models is defined, with concomitant information assumed to influence both the component weights and the conditional means. The contribution of a concomitant variable is flexibly specified as a smooth function represented by cubic splines. A Bayesian estimation procedure is proposed and an empirical analysis of the baseball salaries dataset is illustrated.
2021
CLADAG 2021 Book of Abstracts and Short Papers
268
271
Marco Berrettini, Giuliano Galimberti, Saverio Ranciati (2021). Semiparametric finite mixture of regression models with Bayesian P-splines. Firenze : Firenze University Press.
Marco Berrettini; Giuliano Galimberti; Saverio Ranciati
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/854944
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact