Context. The discovery of hundreds of quasi-stellar objects (QSOs) in the first gigayear of the Universe powered by already grown supermassive black holes (SMBHs) challenges our knowledge of SMBH formation. In particular, investigations of z > 6 QSOs that present notable properties can provide unique information on the physics of fast SMBH growth in the early Universe. Aims. We present the results of follow-up observations of the z = 6.515 radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has recently been proposed to host the first heavily obscured X-ray source at high redshift. The goals of these new observations are to confirm the existence of the X-ray source and to investigate the rest-frame UV properties of the QSO. Methods. We observed the PSO167-13 system with Chandra/ACIS-S (177 ks) and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE. Results. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 (L2-10 keV < 8.3 × 1043 erg s-1) is the lowest available for a z > 6 QSO. The ratio between the X-ray and UV luminosity of αox < -1.95 makes PSO167-13 a strong outlier from the αox - LUV and LX - Lbol relations. In particular, its X-ray emission is more than six times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted. Conclusions. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness. © ESO 2021.
Titolo: | Chandra and Magellan /FIRE follow-up observations of PSO167-13: An X-ray weak QSO at z = 6.515 | |
Autore/i: | Vito, F.; Brandt, W. N.; Ricci, F.; Congiu, E.; Connor, T.; Bañados, E.; Bauer, F. E.; Gilli, R.; Luo, B.; Mazzucchelli, C.; Mignoli, M.; Shemmer, O.; Vignali, C.; Calura, F.; Comastri, A.; Decarli, R.; Gallerani, S.; Nanni, R.; Brusa, M.; Cappelluti, N.; Civano, F.; Zamorani, G. | |
Autore/i Unibo: | ||
Anno: | 2021 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1051/0004-6361/202140399 | |
Abstract: | Context. The discovery of hundreds of quasi-stellar objects (QSOs) in the first gigayear of the Universe powered by already grown supermassive black holes (SMBHs) challenges our knowledge of SMBH formation. In particular, investigations of z > 6 QSOs that present notable properties can provide unique information on the physics of fast SMBH growth in the early Universe. Aims. We present the results of follow-up observations of the z = 6.515 radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has recently been proposed to host the first heavily obscured X-ray source at high redshift. The goals of these new observations are to confirm the existence of the X-ray source and to investigate the rest-frame UV properties of the QSO. Methods. We observed the PSO167-13 system with Chandra/ACIS-S (177 ks) and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE. Results. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 (L2-10 keV < 8.3 × 1043 erg s-1) is the lowest available for a z > 6 QSO. The ratio between the X-ray and UV luminosity of αox < -1.95 makes PSO167-13 a strong outlier from the αox - LUV and LX - Lbol relations. In particular, its X-ray emission is more than six times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted. Conclusions. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness. © ESO 2021. | |
Data stato definitivo: | 2022-02-10T10:40:36Z | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipo | Licenza | |
---|---|---|---|---|
aa40399-21.pdf | Versione (PDF) editoriale | Licenza per accesso libero gratuito | Open Access Visualizza/Apri |