Low-power wide-area network technologies are used to interconnect a number of devices in a simple and efficient way. One of these technologies, LoRaWAN, is deemed as one of the most promising due to its capability to allow long-range communications with very small energy consumption. LoRaWAN networks are managed by a network server implementing an adaptive data rate (ADR) algorithm to allocate proper data rates to end devices (EDs). However, the standard ADR solution focuses only on the link-level performance and assigns transmission parameters to EDs one-by-one in an independent way. In this article, we propose a novel and more efficient ADR algorithm, denoted as collision-aware ADR (CA-ADR), which tries to minimize the collision probability when assigning data rates by considering the entire set of EDs in the network and keeping the link-level performance under control. The performance of CA-ADR is characterized and benchmarked against the standard solution as well as another proposal presented in the literature. An integrated simulation-experimental approach is used to assess results for large-scale networks and to compare two architectures based on cloud and fog computing. Results show that CA-ADR outperforms standard solutions when connectivity is good, whereas it behaves similarly in large areas. It is also shown that the improvement with respect to the benchmark solutions does not depend on the channel model considered (no shadowing, uncorrelated, and correlated shadowing). Finally, a fog-based architecture is proved to be feasible, with the advantage of reducing the end-to-end latency.
Marini, R., Cerroni, W., Buratti, C. (2021). A Novel Collision-Aware Adaptive Data Rate Algorithm for LoRaWAN Networks. IEEE INTERNET OF THINGS JOURNAL, 8(4), 2670-2680 [10.1109/JIOT.2020.3020189].
A Novel Collision-Aware Adaptive Data Rate Algorithm for LoRaWAN Networks
Cerroni, Walter;Buratti, Chiara
2021
Abstract
Low-power wide-area network technologies are used to interconnect a number of devices in a simple and efficient way. One of these technologies, LoRaWAN, is deemed as one of the most promising due to its capability to allow long-range communications with very small energy consumption. LoRaWAN networks are managed by a network server implementing an adaptive data rate (ADR) algorithm to allocate proper data rates to end devices (EDs). However, the standard ADR solution focuses only on the link-level performance and assigns transmission parameters to EDs one-by-one in an independent way. In this article, we propose a novel and more efficient ADR algorithm, denoted as collision-aware ADR (CA-ADR), which tries to minimize the collision probability when assigning data rates by considering the entire set of EDs in the network and keeping the link-level performance under control. The performance of CA-ADR is characterized and benchmarked against the standard solution as well as another proposal presented in the literature. An integrated simulation-experimental approach is used to assess results for large-scale networks and to compare two architectures based on cloud and fog computing. Results show that CA-ADR outperforms standard solutions when connectivity is good, whereas it behaves similarly in large areas. It is also shown that the improvement with respect to the benchmark solutions does not depend on the channel model considered (no shadowing, uncorrelated, and correlated shadowing). Finally, a fog-based architecture is proved to be feasible, with the advantage of reducing the end-to-end latency.File | Dimensione | Formato | |
---|---|---|---|
2021_A Novel Collision-Aware Adaptive Data.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
981.53 kB
Formato
Adobe PDF
|
981.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.