Airway remodeling encompass structural changes that occur as the result of chronic injury and lead to persistently altered airway structure and function. Although this process is known in several human respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD), airway remodeling is poorly characterized in the feline counterpart. In this study, we describe the spontaneous pulmonary changes in 3 cats paralleling the airway remodeling reported in humans. We observed airway smooth muscle cells (ASMCs) hyperplasia (peribronchial and interstitial), airway subepithelial and interstitial fibrosis, and vascular remodeling by increased number of vessels in the bronchial submucosa. The hyperplastic ASMCs co-expressed α-SMA, vimentin and desmin suggesting that vimentin, which is not normally expressed by ASMCs, may play a role in airway thickening, and remodeling. ASMCs had strong cytoplasmic expression of TGFβ-1, which is known to contribute to tissue remodeling in asthma and in various bronchial and interstitial lung diseases, suggesting its involvement in the pathogenesis of ASMCs hyperplasia. Our findings provide histologic evidence of airway remodeling in cats. Further studies on larger caseloads are needed to support our conclusions on the value of this feline condition as an animal model for nonspecific airway remodeling in humans.

Airway Remodeling in Feline Lungs

D'Annunzio G.;Gobbo F.;Avallone G.;Bacci B.;Sabattini S.;Sarli G.
2022

Abstract

Airway remodeling encompass structural changes that occur as the result of chronic injury and lead to persistently altered airway structure and function. Although this process is known in several human respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD), airway remodeling is poorly characterized in the feline counterpart. In this study, we describe the spontaneous pulmonary changes in 3 cats paralleling the airway remodeling reported in humans. We observed airway smooth muscle cells (ASMCs) hyperplasia (peribronchial and interstitial), airway subepithelial and interstitial fibrosis, and vascular remodeling by increased number of vessels in the bronchial submucosa. The hyperplastic ASMCs co-expressed α-SMA, vimentin and desmin suggesting that vimentin, which is not normally expressed by ASMCs, may play a role in airway thickening, and remodeling. ASMCs had strong cytoplasmic expression of TGFβ-1, which is known to contribute to tissue remodeling in asthma and in various bronchial and interstitial lung diseases, suggesting its involvement in the pathogenesis of ASMCs hyperplasia. Our findings provide histologic evidence of airway remodeling in cats. Further studies on larger caseloads are needed to support our conclusions on the value of this feline condition as an animal model for nonspecific airway remodeling in humans.
D'Annunzio G.; Gobbo F.; Avallone G.; Bacci B.; Sabattini S.; Sarli G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/854312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact