Cyclists, pedestrians and elderly people’s specific needs in urban road infrastructures are often neglected. They rarely benefit from safety measures or innovations. Inspired by playgrounds and aiming to reduce vulnerable road users (VRUs) injuries, the development of the rubber-based Impact-Absorbing Pavements (IAP) offers a possibility to rethink the design of urban pavements and address safety on roads, which constitutes a major challenge in terms of attaining more sustain-able, resilient, and safe cities. Therefore, bituminous mixtures with four different crumb rubber con-tents, 0%, 14%, 28%, and 33% (in total weight), were produced by partial aggregates substitution using the dry process. After the assessment of the geometrical and volumetric properties, the mechanical performances were evaluated. Finally, the samples were tested to measure the abrasion and impact attenuation with the well-known Head Injury Criterion (HIC), at different temperatures from −10 to 40 °C, to obtain a wide range of values referring to possible weather conditions. A significant effect of the rubber percentage and layer thickness on impact attenuation was observed. All observations and results confirm the feasibility of the IAP concept and its positive effect on future injury-prevention applications.

Makoundou C., Sangiorgi C., Johansson K., Wallqvist V. (2021). Development of functional rubber-based impact-absorbing pavements for cyclist and pedestrian injury reduction. SUSTAINABILITY, 13(20), 1-16 [10.3390/su132011283].

Development of functional rubber-based impact-absorbing pavements for cyclist and pedestrian injury reduction

Makoundou C.
;
Sangiorgi C.;
2021

Abstract

Cyclists, pedestrians and elderly people’s specific needs in urban road infrastructures are often neglected. They rarely benefit from safety measures or innovations. Inspired by playgrounds and aiming to reduce vulnerable road users (VRUs) injuries, the development of the rubber-based Impact-Absorbing Pavements (IAP) offers a possibility to rethink the design of urban pavements and address safety on roads, which constitutes a major challenge in terms of attaining more sustain-able, resilient, and safe cities. Therefore, bituminous mixtures with four different crumb rubber con-tents, 0%, 14%, 28%, and 33% (in total weight), were produced by partial aggregates substitution using the dry process. After the assessment of the geometrical and volumetric properties, the mechanical performances were evaluated. Finally, the samples were tested to measure the abrasion and impact attenuation with the well-known Head Injury Criterion (HIC), at different temperatures from −10 to 40 °C, to obtain a wide range of values referring to possible weather conditions. A significant effect of the rubber percentage and layer thickness on impact attenuation was observed. All observations and results confirm the feasibility of the IAP concept and its positive effect on future injury-prevention applications.
2021
Makoundou C., Sangiorgi C., Johansson K., Wallqvist V. (2021). Development of functional rubber-based impact-absorbing pavements for cyclist and pedestrian injury reduction. SUSTAINABILITY, 13(20), 1-16 [10.3390/su132011283].
Makoundou C.; Sangiorgi C.; Johansson K.; Wallqvist V.
File in questo prodotto:
File Dimensione Formato  
sustainability-13-11283-v3.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/854030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact