The substitution of mineral aggregates with crumb rubber (CR) from waste end‐of‐life tires (ELTs) in the asphalt concretes, has been considered a sustainable paving industry approach. The rubber has been used to construct pavements with proven enhanced resilience and improved durability. However, some issues related to the rubber’s surface adhesion or swelling may arise with these practices and generate complications (binder consumption, temperatures, mixing times). One possible solution to overcome the materials’ compatibility problems is to pre‐treat the CR’s surface before its incorporation into the asphalt mixes to allow a surface functionalization that can enhance coverage and cohesion inside the mixes. The physical treatments using radiations‐based beam are already exploited in the plastic recycling industries avoiding the use of chemicals in con-siderable amounts. Such treatments permit the recovering of large quantities of polymer‐based materials and the enhancement of interfacial properties. This article provides an overview of existing surface treatments of polymers and especially rubber, including gamma ray, UV‐ozone, micro-waves, and plasma. Several studies have shown an overall improvement of the rubber surface’s reactive properties due to contaminant removal or roughness enhancement attributed to cross‐link-ing or scission reactions occurring on the rubber’s surface layer. With those properties, the asphalt mixes’ phase stability properties are increased when the pre‐treated rubber is incorporated. The treatments would permit to increase the CR quantities, yet reduce the layer stiffness, and improve the durability and the sustainability of future advanced road pavements.
Makoundou C., Johansson K., Wallqvist V., Sangiorgi C. (2021). Functionalization of crumb rubber surface for the incorporation into asphalt layers of reduced stiffness: An overview of existing treatment approaches. RECYCLING, 6(1), 1-22 [10.3390/recycling6010019].
Functionalization of crumb rubber surface for the incorporation into asphalt layers of reduced stiffness: An overview of existing treatment approaches
Makoundou C.
;Sangiorgi C.
2021
Abstract
The substitution of mineral aggregates with crumb rubber (CR) from waste end‐of‐life tires (ELTs) in the asphalt concretes, has been considered a sustainable paving industry approach. The rubber has been used to construct pavements with proven enhanced resilience and improved durability. However, some issues related to the rubber’s surface adhesion or swelling may arise with these practices and generate complications (binder consumption, temperatures, mixing times). One possible solution to overcome the materials’ compatibility problems is to pre‐treat the CR’s surface before its incorporation into the asphalt mixes to allow a surface functionalization that can enhance coverage and cohesion inside the mixes. The physical treatments using radiations‐based beam are already exploited in the plastic recycling industries avoiding the use of chemicals in con-siderable amounts. Such treatments permit the recovering of large quantities of polymer‐based materials and the enhancement of interfacial properties. This article provides an overview of existing surface treatments of polymers and especially rubber, including gamma ray, UV‐ozone, micro-waves, and plasma. Several studies have shown an overall improvement of the rubber surface’s reactive properties due to contaminant removal or roughness enhancement attributed to cross‐link-ing or scission reactions occurring on the rubber’s surface layer. With those properties, the asphalt mixes’ phase stability properties are increased when the pre‐treated rubber is incorporated. The treatments would permit to increase the CR quantities, yet reduce the layer stiffness, and improve the durability and the sustainability of future advanced road pavements.File | Dimensione | Formato | |
---|---|---|---|
recycling-06-00019-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
5.84 MB
Formato
Adobe PDF
|
5.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.