We introduce a general framework for stochastic volatility models, with the risky asset dynamics given by: dXt(ω, η) = μt η)Xt(ω, η)dt +σt(η)(ω,η)dWt(ω) where (ω, η) ∈ (Ω × H,fΩ⊗fH, PΩ⊗PH). In particular, we allow for random discontinuities in the volatility σ and the drift μ. First we characterize the set of equivalent martingale measures, then compute the mean- variance optimal measure P̃, using some results of Schweizer on the existence of an adjustment process β. We show examples where the risk premium λ=(μ- r)/σ follows a discontinuous process, and make explicit calculations for P̃.

Biagini F, Guasoni P (2002). Mean-variance hedging with random volatility jumps. STOCHASTIC ANALYSIS AND APPLICATIONS, 20(3), 471-494 [10.1081/SAP-120004112].

Mean-variance hedging with random volatility jumps

Guasoni P
Co-primo
2002

Abstract

We introduce a general framework for stochastic volatility models, with the risky asset dynamics given by: dXt(ω, η) = μt η)Xt(ω, η)dt +σt(η)(ω,η)dWt(ω) where (ω, η) ∈ (Ω × H,fΩ⊗fH, PΩ⊗PH). In particular, we allow for random discontinuities in the volatility σ and the drift μ. First we characterize the set of equivalent martingale measures, then compute the mean- variance optimal measure P̃, using some results of Schweizer on the existence of an adjustment process β. We show examples where the risk premium λ=(μ- r)/σ follows a discontinuous process, and make explicit calculations for P̃.
2002
Biagini F, Guasoni P (2002). Mean-variance hedging with random volatility jumps. STOCHASTIC ANALYSIS AND APPLICATIONS, 20(3), 471-494 [10.1081/SAP-120004112].
Biagini F; Guasoni P
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/853910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact