We give a characterization of onto interpolating sequences with finite associated measure for the Dirichlet space in terms of condenser capacity. In the Sobolev space H1(D) we define a natural notion of onto interpolation and we prove that the same condenser capacity condition characterizes all onto interpolating sequences. As a result, for sequences with finite associated measure, the problem of interpolation by an analytic function reduces to a problem of interpolation by a function in H1(D).

Chalmoukis, N. (2021). Onto interpolation for the Dirichlet space and for H1(D). ADVANCES IN MATHEMATICS, 381, 1-34 [10.1016/j.aim.2021.107634].

Onto interpolation for the Dirichlet space and for H1(D)

Chalmoukis, Nikolaos
2021

Abstract

We give a characterization of onto interpolating sequences with finite associated measure for the Dirichlet space in terms of condenser capacity. In the Sobolev space H1(D) we define a natural notion of onto interpolation and we prove that the same condenser capacity condition characterizes all onto interpolating sequences. As a result, for sequences with finite associated measure, the problem of interpolation by an analytic function reduces to a problem of interpolation by a function in H1(D).
2021
Chalmoukis, N. (2021). Onto interpolation for the Dirichlet space and for H1(D). ADVANCES IN MATHEMATICS, 381, 1-34 [10.1016/j.aim.2021.107634].
Chalmoukis, Nikolaos
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/851848
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact