We show that the number of isometry classes of cusped hyperbolic 3-manifolds that bound geometrically grows at least super-exponentially with their volume, both in the arithmetic and non-arithmetic settings.
Kolpakov A., Riolo S. (2020). Counting cusped hyperbolic 3-manifolds that bound geometrically. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 373(1), 229-247 [10.1090/tran/7883].
Counting cusped hyperbolic 3-manifolds that bound geometrically
Riolo S.
2020
Abstract
We show that the number of isometry classes of cusped hyperbolic 3-manifolds that bound geometrically grows at least super-exponentially with their volume, both in the arithmetic and non-arithmetic settings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.