We show that the number of isometry classes of cusped hyperbolic 3-manifolds that bound geometrically grows at least super-exponentially with their volume, both in the arithmetic and non-arithmetic settings.

Kolpakov A., Riolo S. (2020). Counting cusped hyperbolic 3-manifolds that bound geometrically. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 373(1), 229-247 [10.1090/tran/7883].

Counting cusped hyperbolic 3-manifolds that bound geometrically

Riolo S.
2020

Abstract

We show that the number of isometry classes of cusped hyperbolic 3-manifolds that bound geometrically grows at least super-exponentially with their volume, both in the arithmetic and non-arithmetic settings.
2020
Kolpakov A., Riolo S. (2020). Counting cusped hyperbolic 3-manifolds that bound geometrically. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 373(1), 229-247 [10.1090/tran/7883].
Kolpakov A.; Riolo S.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/851818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact