The COVID-19 pandemic confronts society with a dilemma between (in)visibility, security, and care. While invisibility might be sought by unregistered and undocumented people, being counted and thus visible during a pandemic is a precondition of existence and care. This article asks whether and how unregistered populations like undocumented migrants should be included in statistics and other “counting” exercises devised to track virus diffusion and its impact. In particular, the paper explores how such inclusion can be just, given that for unregistered people visibility is often associated with surveillance. It also reflects on how policymaking can act upon the relationship between data, visibility, and populations in pragmatic terms. Conversing with science and technology studies and critical data studies, the paper frames the dilemma between (in)visibility and care as an issue of sociotechnical nature and identifies four criteria linked to the sociotechnical characteristics of the data infrastructure enabling visibility. It surveys “counting” initiatives targeting unregistered and undocumented populations undertaken by European countries in the aftermath of the pandemic, and illustrates the medical, economic, and social consequences of invisibility. On the basis of our analysis, we outline four scenarios that articulate the visibility/invisibility binary in novel, nuanced terms, and identify in the “de facto inclusion” scenario the best option for both migrants and the surrounding communities. Finally, we offer policy recommendations to avoid surveillance and overreach and promote instead a more just “de facto” civil inclusion of undocumented populations.

Pelizza, A., Milan, S., Lausberg, Y. (2021). Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus. DATA & POLICY, 3(E18), 1-13 [10.1017/dap.2021.19].

Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus

Pelizza, Annalisa;Lausberg, Yoren
2021

Abstract

The COVID-19 pandemic confronts society with a dilemma between (in)visibility, security, and care. While invisibility might be sought by unregistered and undocumented people, being counted and thus visible during a pandemic is a precondition of existence and care. This article asks whether and how unregistered populations like undocumented migrants should be included in statistics and other “counting” exercises devised to track virus diffusion and its impact. In particular, the paper explores how such inclusion can be just, given that for unregistered people visibility is often associated with surveillance. It also reflects on how policymaking can act upon the relationship between data, visibility, and populations in pragmatic terms. Conversing with science and technology studies and critical data studies, the paper frames the dilemma between (in)visibility and care as an issue of sociotechnical nature and identifies four criteria linked to the sociotechnical characteristics of the data infrastructure enabling visibility. It surveys “counting” initiatives targeting unregistered and undocumented populations undertaken by European countries in the aftermath of the pandemic, and illustrates the medical, economic, and social consequences of invisibility. On the basis of our analysis, we outline four scenarios that articulate the visibility/invisibility binary in novel, nuanced terms, and identify in the “de facto inclusion” scenario the best option for both migrants and the surrounding communities. Finally, we offer policy recommendations to avoid surveillance and overreach and promote instead a more just “de facto” civil inclusion of undocumented populations.
2021
Pelizza, A., Milan, S., Lausberg, Y. (2021). Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus. DATA & POLICY, 3(E18), 1-13 [10.1017/dap.2021.19].
Pelizza, Annalisa; Milan, Stefania; Lausberg, Yoren
File in questo prodotto:
File Dimensione Formato  
Pelizza_Milan_Lausberg2021.pdf

accesso aperto

Descrizione: Articolo
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 312.4 kB
Formato Adobe PDF
312.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/851794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact