A band of intense rainfall extends more than 1,000 km along Mexico’s west coast during Northern Hemisphere summer, constituting the core of the North American monsoon1,2. As in other tropical monsoons, this rainfall maximum is commonly thought to be thermally forced by emission of heat from land and elevated terrain into the overlying atmosphere3–5, but a clear understanding of the fundamental mechanism governing this monsoon is lacking. Here we show that the core North American monsoon is generated when Mexico’s Sierra Madre mountains deflect the extratropical jet stream towards the Equator, mechanically forcing eastward, upslope flow that lifts warm and moist air to produce convective rainfall. These findings are based on analyses of dynamic and thermodynamic structures in observations, global climate model integrations and adiabatic stationary wave solutions. Land surface heat fluxes do precondition the atmosphere for convection, particularly in summer afternoons, but these heat fluxes alone are insufficient for producing the observed rainfall maximum. Our results indicate that the core North American monsoon should be understood as convectively enhanced orographic rainfall in a mechanically forced stationary wave, not as a classic, thermally forced tropical monsoon. This has implications for the response of the North American monsoon to past and future global climate change, making trends in jet stream interactions with orography of central importance.

Mechanical forcing of the North American monsoon by orography / Boos W.R.; Pascale S.. - In: NATURE. - ISSN 0028-0836. - ELETTRONICO. - 599:7886(2021), pp. 611-615. [10.1038/s41586-021-03978-2]

Mechanical forcing of the North American monsoon by orography

Pascale S.
Secondo
2021

Abstract

A band of intense rainfall extends more than 1,000 km along Mexico’s west coast during Northern Hemisphere summer, constituting the core of the North American monsoon1,2. As in other tropical monsoons, this rainfall maximum is commonly thought to be thermally forced by emission of heat from land and elevated terrain into the overlying atmosphere3–5, but a clear understanding of the fundamental mechanism governing this monsoon is lacking. Here we show that the core North American monsoon is generated when Mexico’s Sierra Madre mountains deflect the extratropical jet stream towards the Equator, mechanically forcing eastward, upslope flow that lifts warm and moist air to produce convective rainfall. These findings are based on analyses of dynamic and thermodynamic structures in observations, global climate model integrations and adiabatic stationary wave solutions. Land surface heat fluxes do precondition the atmosphere for convection, particularly in summer afternoons, but these heat fluxes alone are insufficient for producing the observed rainfall maximum. Our results indicate that the core North American monsoon should be understood as convectively enhanced orographic rainfall in a mechanically forced stationary wave, not as a classic, thermally forced tropical monsoon. This has implications for the response of the North American monsoon to past and future global climate change, making trends in jet stream interactions with orography of central importance.
2021
Mechanical forcing of the North American monsoon by orography / Boos W.R.; Pascale S.. - In: NATURE. - ISSN 0028-0836. - ELETTRONICO. - 599:7886(2021), pp. 611-615. [10.1038/s41586-021-03978-2]
Boos W.R.; Pascale S.
File in questo prodotto:
File Dimensione Formato  
BoosPascale_accepted _compressed .pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 10.84 MB
Formato Adobe PDF
10.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/850216
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact