Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics.

Szkalisity A., Piccinini F., Beleon A., Balassa T., Varga I.G., Migh E., et al. (2021). Regression plane concept for analysing continuous cellular processes with machine learning. NATURE COMMUNICATIONS, 12(1), 2532-2532 [10.1038/s41467-021-22866-x].

Regression plane concept for analysing continuous cellular processes with machine learning

Piccinini F.
Secondo
;
2021

Abstract

Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics.
2021
Szkalisity A., Piccinini F., Beleon A., Balassa T., Varga I.G., Migh E., et al. (2021). Regression plane concept for analysing continuous cellular processes with machine learning. NATURE COMMUNICATIONS, 12(1), 2532-2532 [10.1038/s41467-021-22866-x].
Szkalisity A.; Piccinini F.; Beleon A.; Balassa T.; Varga I.G.; Migh E.; Molnar C.; Paavolainen L.; Timonen S.; Banerjee I.; Ikonen E.; Yamauchi Y.; A...espandi
File in questo prodotto:
File Dimensione Formato  
0061_2021_NatureCommunications_Szkalisity.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.62 MB
Formato Adobe PDF
4.62 MB Adobe PDF Visualizza/Apri
41467_2021_22866_MOESM16_ESM.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 59.16 MB
Formato Zip File
59.16 MB Zip File Visualizza/Apri
41467_2021_22866_MOESM13_ESM.mp4.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 145.08 MB
Formato Zip File
145.08 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/849968
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact