A general single-step approach is introduced for the green fabrication of hybrid biosensors from water dispersion. The resulting device integrates the semiconducting properties of a carbon nanotube (CNT) and the functionality of a protein. In the initial aqueous phase, the protein (viz., lysozyme [LZ]) disperses the (6,5)CNT. Drop-casting of the dispersion on a test pattern (a silicon wafer with interdigitated Au source and drain electrodes) yields a fully operating, robust, electrolyte-gated transistor (EGT) in one step. The EGT response to biorecognition is then assessed using the LZ inhibitor N-acetyl glucosamine trisaccharide. Analysis of the output signal allows one to extract a protein-substrate binding constant in line with values reported for the free (without CNT) system. The methodology is robust, easy to optimize, redirectable toward different targets and sets the grounds for a new class of CNT-protein biosensors that overcome many limitations of the technology of fabrication of CNT biosensors.
Berto M., Di Giosia M., Giordani M., Sensi M., Valle F., Alessandrini A., et al. (2021). Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition. ADVANCED ELECTRONIC MATERIALS, 7(5), 2001114-2001114 [10.1002/aelm.202001114].
Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition
Di Giosia M.;Cantelli A.;Zerbetto F.;Calvaresi M.
;
2021
Abstract
A general single-step approach is introduced for the green fabrication of hybrid biosensors from water dispersion. The resulting device integrates the semiconducting properties of a carbon nanotube (CNT) and the functionality of a protein. In the initial aqueous phase, the protein (viz., lysozyme [LZ]) disperses the (6,5)CNT. Drop-casting of the dispersion on a test pattern (a silicon wafer with interdigitated Au source and drain electrodes) yields a fully operating, robust, electrolyte-gated transistor (EGT) in one step. The EGT response to biorecognition is then assessed using the LZ inhibitor N-acetyl glucosamine trisaccharide. Analysis of the output signal allows one to extract a protein-substrate binding constant in line with values reported for the free (without CNT) system. The methodology is robust, easy to optimize, redirectable toward different targets and sets the grounds for a new class of CNT-protein biosensors that overcome many limitations of the technology of fabrication of CNT biosensors.File | Dimensione | Formato | |
---|---|---|---|
Berto_etal_MS_not tracked.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
aelm202001114-sup-0001-suppmat.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per accesso libero gratuito
Dimensione
3.2 MB
Formato
Adobe PDF
|
3.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.