Regression trees represent one of the most popular tools in predictive data mining applications. However, their performances severely degrade in the presence of highly-skewed and/or long-tailed error distributions, and especially for grossly mis-measured values of the dependent variable. In this paper, these issues are discussed from both a theoretical and a practical point of view, and some recent proposals to overcome these difficulties are presented.

G. Galimberti, M. Pillati, G. Soffritti (2009). Some issues on robustness of regression trees. PADOVA : CLEUP.

Some issues on robustness of regression trees

GALIMBERTI, GIULIANO;PILLATI, MARILENA;SOFFRITTI, GABRIELE
2009

Abstract

Regression trees represent one of the most popular tools in predictive data mining applications. However, their performances severely degrade in the presence of highly-skewed and/or long-tailed error distributions, and especially for grossly mis-measured values of the dependent variable. In this paper, these issues are discussed from both a theoretical and a practical point of view, and some recent proposals to overcome these difficulties are presented.
2009
Classification and Data Analysis 2009
147
150
G. Galimberti, M. Pillati, G. Soffritti (2009). Some issues on robustness of regression trees. PADOVA : CLEUP.
G. Galimberti; M. Pillati; G. Soffritti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/84936
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact