Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation. [Figure not available: see fulltext.]
Acharya S., Adamova D., Adler A., Adolfsson J., Aglieri Rinella G., Agnello M., et al. (2021). Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at √s , √sNN = 5.02 TeV. JOURNAL OF HIGH ENERGY PHYSICS, 2021(9), 1-31 [10.1007/JHEP09(2021)211].
Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at √s , √sNN = 5.02 TeV
Acharya S.;Adamova D.;Adler A.;Adolfsson J.;Aglieri Rinella G.;Agnello M.;Agrawal N.;Ahammed Z.;Ahmad S.;Ahn S. U.;Akbar Z.;Akindinov A.;Al-Turany M.;Albuquerque D. S. D.;Aleksandrov D.;Alessandro B.;Alfanda H. M.;Alfaro Molina R.;Ali B.;Ali Y.;Alici A.;Alizadehvandchali N.;Alkin A.;Alme J.;Alt T.;Altenkamper L.;Altsybeev I.;Anaam M. N.;Andrei C.;Andreou D.;Andronic A.;Anguelov V.;Anticic T.;Antinori F.;Antonioli P.;Apadula N.;Aphecetche L.;Appelshauser H.;Arcelli S.;Arnaldi R.;Arratia M.;Arsene I. C.;Arslandok M.;Augustinus A.;Averbeck R.;Aziz S.;Azmi M. D.;Badala A.;Baek Y. W.;Bai X.;Bailhache R.;Bala R.;Balbino A.;Baldisseri A.;Ball M.;Banerjee D.;Barbera R.;Barioglio L.;Barlou M.;Barnafoldi G. G.;Barnby L. S.;Barret V.;Bartels C.;Barth K.;Bartsch E.;Baruffaldi F.;Bastid N.;Basu S.;Batigne G.;Batyunya B.;Bauri D.;Bazo Alba J. L.;Bearden I. G.;Beattie C.;Belikov I.;Bell Hechavarria A. D. C.;Bellini F.;Bellwied R.;Belokurova S.;Belyaev V.;Bencedi G.;Beole S.;Bercuci A.;Berdnikov Y.;Berdnikova A.;Berenyi D.;Bergmann L.;Besoiu M. G.;Betev L.;Bhaduri P. P.;Bhasin A.;Bhat I. R.;Bhat M. A.;Bhattacharjee B.;Bhattacharya P.;Bianchi A.;Bianchi L.;Bianchi N.;Bielcik J.;Bielcikova J.;Bilandzic A.;Biro G.;Biswas S.;Blair J. T.;Blau D.;Blidaru M. B.;Blume C.;Boca G.;Bock F.;Bogdanov A.;Boi S.;Bok J.;Boldizsar L.;Bolozdynya A.;Bombara M.;Bonomi G.;Borel H.;Borissov A.;Bossi H.;Botta E.;Bratrud L.;Braun-Munzinger P.;Bregant M.;Broz M.;Bruno G. E.;Buckland M. D.;Budnikov D.;Buesching H.;Bufalino S.;Bugnon O.;Buhler P.;Buncic P.;Buthelezi Z.;Butt J. B.;Bysiak S. A.;Caffarri D.;Caliva A.;Calvo Villar E.;Camacho J. M. M.;Camacho R. S.;Camerini P.;Canedo F. D. M.;Capon A. A.;Carnesecchi F.;Caron R.;Castillo Castellanos J.;Casula E. A. R.;Catalano F.;Ceballos Sanchez C.;Chakraborty P.;Chandra S.;Chang W.;Chapeland S.;Chartier M.;Chattopadhyay S.;Chattopadhyay S.;Chauvin A.;Cheshkov C.;Cheynis B.;Chibante Barroso V.;Chinellato D. D.;Cho S.;Chochula P.;Christakoglou P.;Christensen C. H.;Christiansen P.;Chujo T.;Cicalo C.;Cifarelli L.;Cindolo F.;Ciupek M. R.;Clai G.;Cleymans J.;Colamaria F.;Colburn J. S.;Colella D.;Collu A.;Colocci M.;Concas M.;Conesa Balbastre G.;Conesa del Valle Z.;Contin G.;Contreras J. G.;Cormier T. M.;Cortese P.;Cosentino M. R.;Costa F.;Costanza S.;Crochet P.;Cuautle E.;Cui P.;Cunqueiro L.;Dainese A.;Damas F. P. A.;Danisch M. C.;Danu A.;Das D.;Das I.;Das P.;Das P.;Das S.;Dash S.;De S.;De Caro A.;de Cataldo G.;De Cilladi L.;de Cuveland J.;De Falco A.;De Gruttola D.;De Marco N.;De Martin C.;De Pasquale S.;Deb S.;Degenhardt H. F.;Deja K. R.;Delsanto S.;Deng W.;Dhankher P.;Di Bari D.;Di Mauro A.;Diaz R. A.;Dietel T.;Dillenseger P.;Ding Y.;Divia R.;Dixit D. U.;Djuvsland O.;Dmitrieva U.;Do J.;Dobrin A.;Donigus B.;Dordic O.;Dubey A. K.;Dubla A.;Dudi S.;Dukhishyam M.;Dupieux P.;Eder T. M.;Ehlers R. J.;Eikeland V. N.;Elia D.;Erazmus B.;Ercolessi F.;Erhardt F.;Erokhin A.;Ersdal M. R.;Espagnon B.;Eulisse G.;Evans D.;Evdokimov S.;Fabbietti L.;Faggin M.;Faivre J.;Fan F.;Fantoni A.;Fasel M.;Fecchio P.;Feliciello A.;Feofilov G.;Fernandez Tellez A.;Ferrero A.;Ferretti A.;Festanti A.;Feuillard V. J. G.;Figiel J.;Filchagin S.;Finogeev D.;Fionda F. M.;Fiorenza G.;Flor F.;Flores A. N.;Foertsch S.;Foka P.;Fokin S.;Fragiacomo E.;Fuchs U.;Furget C.;Furs A.;Fusco Girard M.;Gaardhoje J. J.;Gagliardi M.;Gago A. M.;Gal A.;Galvan C. D.;Ganoti P.;Garabatos C.;Garcia J. R. A.;Garcia-Solis E.;Garg K.;Gargiulo C.;Garibli A.;Garner K.;Gasik P.;Gauger E. F.;Gay Ducati M. B.;Germain M.;Ghosh J.;Ghosh P.;Ghosh S. K.;Giacalone M.;Gianotti P.;Giubellino P.;Giubilato P.;Glaenzer A. M. C.;Glassel P.;Gonzalez V.;Gonzalez-Trueba L. H.;Gorbunov S.;Gorlich L.;Gotovac S.;Grabski V.;Graczykowski L. K.;Graham K. L.;Greiner L.;Grelli A.;Grigoras C.;Grigoriev V.;Grigoryan A.;Grigoryan S.;Groettvik O. S.;Grosa F.;Grosse-Oetringhaus J. F.;Grosso R.;Guernane R.;Guilbaud M.;Guittiere M.;Gulbrandsen K.;Gunji T.;Gupta A.;Gupta R.;Guzman I. B.;Haake R.;Habib M. K.;Hadjidakis C.;Hamagaki H.;Hamar G.;Hamid M.;Hannigan R.;Haque M. R.;Harlenderova A.;Harris J. W.;Harton A.;Hasenbichler J. A.;Hassan H.;Hatzifotiadou D.;Hauer P.;Havener L. B.;Hayashi S.;Heckel S. T.;Hellbar E.;Helstrup H.;Herman T.;Hernandez E. G.;Herrera Corral G.;Herrmann F.;Hetland K. F.;Hillemanns H.;Hills C.;Hippolyte B.;Hohlweger B.;Honermann J.;Hong G. H.;Horak D.;Hornung S.;Hosokawa R.;Hristov P.;Huang C.;Hughes C.;Huhn P.;Humanic T. J.;Hushnud H.;Husova L. A.;Hussain N.;Hutter D.;Iddon J. P.;Ilkaev R.;Ilyas H.;Inaba M.;Innocenti G. M.;Ippolitov M.;Isakov A.;Islam M. S.;Ivanov M.;Ivanov V.;Izucheev V.;Jacak B.;Jacazio N.;Jacobs P. M.;Jadlovska S.;Jadlovsky J.;Jaelani S.;Jahnke C.;Jakubowska M. J.;Janik M. A.;Janson T.;Jercic M.;Jevons O.;Jin M.;Jonas F.;Jones P. G.;Jung J.;Jung M.;Jusko A.;Kalinak P.;Kalweit A.;Kaplin V.;Kar S.;Karasu Uysal A.;Karatovic D.;Karavichev O.;Karavicheva T.;Karczmarczyk P.;Karpechev E.;Kazantsev A.;Kebschull U.;Keidel R.;Keil M.;Ketzer B.;Khabanova Z.;Khan A. M.;Khan S.;Khanzadeev A.;Kharlov Y.;Khatun A.;Khuntia A.;Kileng B.;Kim B.;Kim D.;Kim D. J.;Kim E. J.;Kim H.;Kim J.;Kim J. S.;Kim J.;Kim J.;Kim J.;Kim M.;Kim S.;Kim T.;Kim T.;Kirsch S.;Kisel I.;Kiselev S.;Kisiel A.;Klay J. L.;Klein J.;Klein S.;Klein-Bosing C.;Kleiner M.;Klemenz T.;Kluge A.;Knospe A. G.;Kobdaj C.;Kohler M. K.;Kollegger T.;Kondratyev A.;Kondratyeva N.;Kondratyuk E.;Konig J.;Konigstorfer S. A.;Konopka P. J.;Kornakov G.;Koryciak S. D.;Koska L.;Kovalenko O.;Kovalenko V.;Kowalski M.;Kralik I.;Kravcakova A.;Kreis L.;Krivda M.;Krizek F.;Krizkova Gajdosova K.;Kroesen M.;Kruger M.;Kryshen E.;Krzewicki M.;Kucera V.;Kuhn C.;Kuijer P. G.;Kumaoka T.;Kumar L.;Kundu S.;Kurashvili P.;Kurepin A.;Kurepin A. B.;Kuryakin A.;Kushpil S.;Kvapil J.;Kweon M. J.;Kwon J. Y.;Kwon Y.;La Pointe S. L.;La Rocca P.;Lai Y. S.;Lakrathok A.;Lamanna M.;Langoy R.;Lapidus K.;Larionov P.;Laudi E.;Lautner L.;Lavicka R.;Lazareva T.;Lea R.;Lee J.;Lee S.;Lehrbach J.;Lemmon R. C.;Leon Monzon I.;Lesser E. D.;Lettrich M.;Levai P.;Li X.;Li X. L.;Lien J.;Lietava R.;Lim B.;Lim S. H.;Lindenstruth V.;Lindner A.;Lippmann C.;Liu A.;Liu J.;Lofnes I. M.;Loginov V.;Loizides C.;Loncar P.;Lopez J. A.;Lopez X.;Lopez Torres E.;Luhder J. R.;Lunardon M.;Luparello G.;Ma Y. G.;Maevskaya A.;Mager M.;Mahmood S. M.;Mahmoud T.;Maire A.;Majka R. D.;Malaev M.;Malik Q. W.;Malinina L.;Mal'Kevich D.;Mallick N.;Malzacher P.;Mandaglio G.;Manko V.;Manso F.;Manzari V.;Mao Y.;Marchisone M.;Mares J.;Margagliotti G. V.;Margotti A.;Marin A.;Markert C.;Marquard M.;Martin N. A.;Martinengo P.;Martinez J. L.;Martinez M. I.;Martinez Garcia G.;Masciocchi S.;Masera M.;Masoni A.;Massacrier L.;Mastroserio A.;Mathis A. M.;Matonoha O.;Matuoka P. F. T.;Matyja A.;Mayer C.;Mazzaschi F.;Mazzilli M.;Mazzoni M. A.;Mechler A. F.;Meddi F.;Melikyan Y.;Menchaca-Rocha A.;Mengke C.;Meninno E.;Menon A. S.;Meres M.;Mhlanga S.;Miake Y.;Micheletti L.;Migliorin L. C.;Mihaylov D. L.;Mikhaylov K.;Mishra A. N.;Miskowiec D.;Modak A.;Mohammadi N.;Mohanty A. P.;Mohanty B.;Mohisin Khan M.;Moravcova Z.;Mordasini C.;Moreira De Godoy D. A.;Moreno L. A. P.;Morozov I.;Morsch A.;Mrnjavac T.;Muccifora V.;Mudnic E.;Muhlheim D.;Muhuri S.;Mulligan J. D.;Mulliri A.;Munhoz M. G.;Munzer R. H.;Murakami H.;Murray S.;Musa L.;Musinsky J.;Myers C. J.;Myrcha J. W.;Naik B.;Nair R.;Nandi B. K.;Nania R.;Nappi E.;Naru M. U.;Nassirpour A. F.;Nattrass C.;Nazarenko S.;Neagu A.;Nellen L.;Nesbo S. V.;Neskovic G.;Nesterov D.;Nielsen B. S.;Nikolaev S.;Nikulin S.;Nikulin V.;Noferini F.;Noh S.;Nomokonov P.;Norman J.;Novitzky N.;Nowakowski P.;Nyanin A.;Nystrand J.;Ogino M.;Ohlson A.;Oleniacz J.;Oliveira Da Silva A. C.;Oliver M. H.;Onnerstad B. S.;Oppedisano C.;Ortiz Velasquez A.;Osako T.;Oskarsson A.;Otwinowski J.;Oyama K.;Pachmayer Y.;Padhan S.;Pagano D.;Paic G.;Pan J.;Panebianco S.;Pareek P.;Park J.;Parkkila J. E.;Parmar S.;Pathak S. P.;Paul B.;Pazzini J.;Pei H.;Peitzmann T.;Peng X.;Pereira L. G.;Pereira Da Costa H.;Peresunko D.;Perez G. M.;Perrin S.;Pestov Y.;Petracek V.;Petrovici M.;Pezzi R. P.;Piano S.;Pikna M.;Pillot P.;Pinazza O.;Pinsky L.;Pinto C.;Pisano S.;Ploskon M.;Planinic M.;Pliquett F.;Poghosyan M. G.;Polichtchouk B.;Poljak N.;Pop A.;Porteboeuf-Houssais S.;Porter J.;Pozdniakov V.;Prasad S. K.;Preghenella R.;Prino F.;Pruneau C. A.;Pshenichnov I.;Puccio M.;Qiu S.;Quaglia L.;Quishpe R. E.;Ragoni S.;Rak J.;Rakotozafindrabe A.;Ramello L.;Rami F.;Ramirez S. A. R.;Ramos A. G. T.;Raniwala R.;Raniwala S.;Rasanen S. S.;Rath R.;Ravasenga I.;Read K. F.;Redelbach A. R.;Redlich K.;Rehman A.;Reichelt P.;Reidt F.;Renfordt R.;Rescakova Z.;Reygers K.;Riabov A.;Riabov V.;Richert T.;Richter M.;Riedler P.;Riegler W.;Riggi F.;Ristea C.;Rode S. P.;Rodriguez Cahuantzi M.;Roed K.;Rogalev R.;Rogochaya E.;Rogoschinski T. S.;Rohr D.;Rohrich D.;Rojas P. F.;Rokita P. S.;Ronchetti F.;Rosano A.;Rosas E. D.;Rossi A.;Rotondi A.;Roy A.;Roy P.;Rubini N.;Rueda O. V.;Rui R.;Rumyantsev B.;Rustamov A.;Ryabinkin E.;Ryabov Y.;Rybicki A.;Rytkonen H.;Saarimaki O. A. M.;Sadek R.;Sadovsky S.;Saetre J.;Safarik K.;Saha S. K.;Saha S.;Sahoo B.;Sahoo P.;Sahoo R.;Sahoo S.;Sahu D.;Sahu P. K.;Saini J.;Sakai S.;Sambyal S.;Samsonov V.;Sarkar D.;Sarkar N.;Sarma P.;Sarti V. M.;Sas M. H. P.;Schambach J.;Scheid H. S.;Schiaua C.;Schicker R.;Schmah A.;Schmidt C.;Schmidt H. R.;Schmidt M. O.;Schmidt M.;Schmidt N. V.;Schmier A. R.;Schotter R.;Schukraft J.;Schutz Y.;Schwarz K.;Schweda K.;Scioli G.;Scomparin E.;Seger J. E.;Sekiguchi Y.;Sekihata D.;Selyuzhenkov I.;Senyukov S.;Seo J. J.;Serebryakov D.;Serksnyte L.;Sevcenco A.;Shabanov A.;Shabetai A.;Shahoyan R.;Shaikh W.;Shangaraev A.;Sharma A.;Sharma H.;Sharma M.;Sharma N.;Sharma S.;Sheibani O.;Sheikh A. I.;Shigaki K.;Shimomura M.;Shirinkin S.;Shou Q.;Sibiriak Y.;Siddhanta S.;Siemiarczuk T.;Silvermyr D.;Simatovic G.;Simonetti G.;Singh B.;Singh R.;Singh R.;Singh R.;Singh V. K.;Singhal V.;Sinha T.;Sitar B.;Sitta M.;Skaali T. B.;Slupecki M.;Smirnov N.;Snellings R. J. M.;Snellman T. W.;Soncco C.;Song J.;Songmoolnak A.;Soramel F.;Sorensen S.;Sputowska I.;Stachel J.;Stan I.;Steffanic P. J.;Stiefelmaier S. F.;Stocco D.;Storetvedt M. M.;Stritto L. D.;Stylianidis C. P.;Suaide A. A. P.;Sugitate T.;Suire C.;Suljic M.;Sultanov R.;Sumbera M.;Sumberia V.;Sumowidagdo S.;Swain S.;Szabo A.;Szarka I.;Tabassam U.;Taghavi S. F.;Taillepied G.;Takahashi J.;Tambave G. J.;Tang S.;Tang Z.;Tarhini M.;Tarzila M. G.;Tauro A.;Tejeda Munoz G.;Telesca A.;Terlizzi L.;Terrevoli C.;Tersimonov G.;Thakur S.;Thomas D.;Tieulent R.;Tikhonov A.;Timmins A. R.;Tkacik M.;Toia A.;Topilskaya N.;Toppi M.;Torales-Acosta F.;Torres S. R.;Trifiro A.;Tripathy S.;Tripathy T.;Trogolo S.;Trombetta G.;Tropp L.;Trubnikov V.;Trzaska W. H.;Trzcinski T. P.;Trzeciak B. A.;Tumkin A.;Turrisi R.;Tveter T. S.;Ullaland K.;Umaka E. N.;Uras A.;Usai G. L.;Vala M.;Valle N.;Vallero S.;van der Kolk N.;van Doremalen L. V. R.;van Leeuwen M.;Vande Vyvre P.;Varga D.;Varga Z.;Varga-Kofarago M.;Vargas A.;Vasileiou M.;Vasiliev A.;Vazquez Doce O.;Vechernin V.;Vercellin E.;Vergara Limon S.;Vermunt L.;Vertesi R.;Verweij M.;Vickovic L.;Vilakazi Z.;Villalobos Baillie O.;Vino G.;Vinogradov A.;Virgili T.;Vislavicius V.;Vodopyanov A.;Volkel B.;Volkl M. A.;Voloshin K.;Voloshin S. A.;Volpe G.;von Haller B.;Vorobyev I.;Voscek D.;Vrlakova J.;Wagner B.;Weber M.;Wegrzynek A.;Wenzel S. C.;Wessels J. P.;Wiechula J.;Wikne J.;Wilk G.;Wilkinson J.;Willems G. A.;Willsher E.;Windelband B.;Winn M.;Witt W. E.;Wright J. R.;Wu Y.;Xu R.;Yalcin S.;Yamaguchi Y.;Yamakawa K.;Yang S.;Yano S.;Yin Z.;Yokoyama H.;Yoo I. -K.;Yoon J. H.;Yuan S.;Yuncu A.;Yurchenko V.;Zaccolo V.;Zaman A.;Zampolli C.;Zanoli H. J. C.;Zardoshti N.;Zarochentsev A.;Zavada P.;Zaviyalov N.;Zbroszczyk H.;Zhalov M.;Zhang S.;Zhang X.;Zhang Y.;Zherebchevskii V.;Zhi Y.;Zhou D.;Zhou Y.;Zhu J.;Zhu Y.;Zichichi A.;Zinovjev G.;Zurlo N.
2021
Abstract
Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation. [Figure not available: see fulltext.]
Acharya S., Adamova D., Adler A., Adolfsson J., Aglieri Rinella G., Agnello M., et al. (2021). Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at √s , √sNN = 5.02 TeV. JOURNAL OF HIGH ENERGY PHYSICS, 2021(9), 1-31 [10.1007/JHEP09(2021)211].
Acharya S.; Adamova D.; Adler A.; Adolfsson J.; Aglieri Rinella G.; Agnello M.; Agrawal N.; Ahammed Z.; Ahmad S.; Ahn S.U.; Akbar Z.; Akindinov A.; Al...espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/847183
Citazioni
ND
3
3
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.