Mining activities are among the main sources of potentially toxic elements (PTEs) in the environment which constitute a real concern worldwide, especially in developing countries. These activities have been carried out for more than a century in Chile, South America, where, as evidence of incorrect waste disposal practices, several abandoned mining waste deposits were left behind. This study aimed to understand multi-elements geochemistry, source patterns and mobility of PTEs in soils of the Taltal urban area (northern Chile). Topsoil samples (n = 125) were collected in the urban area of Taltal city (6 km(2)) where physicochemical properties (redox potential, electric conductivity and pH) as well as chemical concentrations for 35 elements were determined by inductively coupled plasma optical emission spectrometer. Data were treated following a robust workflow, which included factor analysis (based on ilr-transformed data), a new robust compositional contamination index (RCCI), and fractal/multi-fractal interpolation in GIS environment. This approach allowed to generate significant elemental associations, identifying pool of elements related either to the geological background, pedogenic processes accompanying soil formation or to anthropogenic activities. In particular, the study eventually focused on a pool of 6 PTEs (As, Cd, Cr, Cu, Pb, and Zn), their spatial distribution in the Taltal city, and the potential sources and mechanisms controlling their concentrations. Results showed generally low baseline values of PTEs in most sites of the surveyed area. On a smaller number of sites, however, higher values concentrations of As, Cd, Cu, Zn and Pb were found. These corresponded to very high RCCI contamination level and were correlated to potential anthropogenic sources, such as the abandoned mining waste deposits in the north-eastern part of the Taltal city. This study highlighted new and significant insight on the contamination levels of Taltal city, and its links with anthropogenic activities. Further research is considered to be crucial to extend this assessment to the entire region. This would provide a comprehensive overview and vital information for the development of intervention limits and guide environmental legislation for these pollutants in Chilean soils.

Reyes A, Thiombane M, Panico A, Daniele L, Lima A, Di Bonito M, et al. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(8), 2573-2594 [10.1007/s10653-019-00404-5].

Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile)

Di Bonito M
Penultimo
Writing – Review & Editing
;
2020

Abstract

Mining activities are among the main sources of potentially toxic elements (PTEs) in the environment which constitute a real concern worldwide, especially in developing countries. These activities have been carried out for more than a century in Chile, South America, where, as evidence of incorrect waste disposal practices, several abandoned mining waste deposits were left behind. This study aimed to understand multi-elements geochemistry, source patterns and mobility of PTEs in soils of the Taltal urban area (northern Chile). Topsoil samples (n = 125) were collected in the urban area of Taltal city (6 km(2)) where physicochemical properties (redox potential, electric conductivity and pH) as well as chemical concentrations for 35 elements were determined by inductively coupled plasma optical emission spectrometer. Data were treated following a robust workflow, which included factor analysis (based on ilr-transformed data), a new robust compositional contamination index (RCCI), and fractal/multi-fractal interpolation in GIS environment. This approach allowed to generate significant elemental associations, identifying pool of elements related either to the geological background, pedogenic processes accompanying soil formation or to anthropogenic activities. In particular, the study eventually focused on a pool of 6 PTEs (As, Cd, Cr, Cu, Pb, and Zn), their spatial distribution in the Taltal city, and the potential sources and mechanisms controlling their concentrations. Results showed generally low baseline values of PTEs in most sites of the surveyed area. On a smaller number of sites, however, higher values concentrations of As, Cd, Cu, Zn and Pb were found. These corresponded to very high RCCI contamination level and were correlated to potential anthropogenic sources, such as the abandoned mining waste deposits in the north-eastern part of the Taltal city. This study highlighted new and significant insight on the contamination levels of Taltal city, and its links with anthropogenic activities. Further research is considered to be crucial to extend this assessment to the entire region. This would provide a comprehensive overview and vital information for the development of intervention limits and guide environmental legislation for these pollutants in Chilean soils.
2020
Reyes A, Thiombane M, Panico A, Daniele L, Lima A, Di Bonito M, et al. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(8), 2573-2594 [10.1007/s10653-019-00404-5].
Reyes A; Thiombane M; Panico A; Daniele L; Lima A; Di Bonito M; De Vivo B
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/846730
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact