Poly(3-hexylthiophene) (P3HT) is found to be a highly effective conductivity-reducing additive for low-density polyethylene (LDPE), which introduces a new application area to the field of conjugated polymers. Additives that reduce the direct-current (DC) electrical conductivity of an insulation material at high electric fields have gained a lot of research interest because they may facilitate the design of more efficient high-voltage direct-current power cables. An ultralow concentration of regio-regular P3HT of 0.0005 wt% is found to reduce the DC conductivity of LDPE threefold, which translates into the highest efficiency reported for any conductivity-reducing additive to date. The here-established approach, i.e., the use of a conjugated polymer as a mere additive, may boost demand in absolute terms beyond the quantities needed for thin-film electronics, which would turn organic semiconductors from a niche product into commodity chemicals.
Pourrahimi A.M., Kumara S., Palmieri F., Yu L., Lund A., Hammarstrom T., et al. (2021). Repurposing Poly(3-hexylthiophene) as a Conductivity-Reducing Additive for Polyethylene-Based High-Voltage Insulation. ADVANCED MATERIALS, 33(27), 2100714-1-2100714-8 [10.1002/adma.202100714].
Repurposing Poly(3-hexylthiophene) as a Conductivity-Reducing Additive for Polyethylene-Based High-Voltage Insulation
Palmieri F.;Fabiani D.;
2021
Abstract
Poly(3-hexylthiophene) (P3HT) is found to be a highly effective conductivity-reducing additive for low-density polyethylene (LDPE), which introduces a new application area to the field of conjugated polymers. Additives that reduce the direct-current (DC) electrical conductivity of an insulation material at high electric fields have gained a lot of research interest because they may facilitate the design of more efficient high-voltage direct-current power cables. An ultralow concentration of regio-regular P3HT of 0.0005 wt% is found to reduce the DC conductivity of LDPE threefold, which translates into the highest efficiency reported for any conductivity-reducing additive to date. The here-established approach, i.e., the use of a conjugated polymer as a mere additive, may boost demand in absolute terms beyond the quantities needed for thin-film electronics, which would turn organic semiconductors from a niche product into commodity chemicals.File | Dimensione | Formato | |
---|---|---|---|
adma.202100714.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
adma202100714-sup-0001-suppmat.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.