For each $nge 0$, let $mu_n$ be a tight probability measure on the Borel $sigma$-field of a metric space $S$. Let $(T,mathcal{C})$ be a measurable space such that the diagonal $igl{(t,t):tin Tigr}$ belongs to $mathcal{C}otimesmathcal{C}$. Fix a measurable function $g:S ightarrow T$ and suppose $mu_n=mu_0$ on $g^{-1}(mathcal{C})$ for all $nge 0$. Necessary and sufficient conditions for the existence of $S$-valued random variables $X_n$, defined on the same probability space and satisfying egin{gather*} X_noverset{a.s.}longrightarrow X_0,quad X_nsimmu_n, ext{ and },g(X_n)=g(X_0), ext{ for all }nge 0, end{gather*} are given. Such conditions are then applied to several examples. The tightness condition on $mu_0$ can be dropped at the price of some assumptions on $S$ and $g$.

Pratelli Luca, Rigo Pietro (2023). A strong version of the Skorohod representation theorem. JOURNAL OF THEORETICAL PROBABILITY, 36, 372-389 [10.1007/s10959-022-01161-5].

A strong version of the Skorohod representation theorem

Rigo Pietro
2023

Abstract

For each $nge 0$, let $mu_n$ be a tight probability measure on the Borel $sigma$-field of a metric space $S$. Let $(T,mathcal{C})$ be a measurable space such that the diagonal $igl{(t,t):tin Tigr}$ belongs to $mathcal{C}otimesmathcal{C}$. Fix a measurable function $g:S ightarrow T$ and suppose $mu_n=mu_0$ on $g^{-1}(mathcal{C})$ for all $nge 0$. Necessary and sufficient conditions for the existence of $S$-valued random variables $X_n$, defined on the same probability space and satisfying egin{gather*} X_noverset{a.s.}longrightarrow X_0,quad X_nsimmu_n, ext{ and },g(X_n)=g(X_0), ext{ for all }nge 0, end{gather*} are given. Such conditions are then applied to several examples. The tightness condition on $mu_0$ can be dropped at the price of some assumptions on $S$ and $g$.
2023
Pratelli Luca, Rigo Pietro (2023). A strong version of the Skorohod representation theorem. JOURNAL OF THEORETICAL PROBABILITY, 36, 372-389 [10.1007/s10959-022-01161-5].
Pratelli Luca; Rigo Pietro
File in questo prodotto:
File Dimensione Formato  
s10959-022-01161-5.pdf

accesso aperto

Descrizione: pdf editoriale
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 315.17 kB
Formato Adobe PDF
315.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/846192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact