We show that non-elliptic prime 3-manifolds satisfy integral approximation for the simplicial volume, that is, that their simplicial volume equals the stable integral simplicial volume. The proof makes use of integral foliated simplicial volume and tools from ergodic theory.
Fauser, D., Loh, C., Moraschini, M., Quintanilha, J.P. (2021). Stable integral simplicial volume of 3-manifolds. JOURNAL OF TOPOLOGY, 14(2), 608-640 [10.1112/topo.12193].
Stable integral simplicial volume of 3-manifolds
Moraschini M.;
2021
Abstract
We show that non-elliptic prime 3-manifolds satisfy integral approximation for the simplicial volume, that is, that their simplicial volume equals the stable integral simplicial volume. The proof makes use of integral foliated simplicial volume and tools from ergodic theory.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Journal of Topology - 2021 - Fauser - Stable integral simplicial volume of 3‐manifolds.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
391.75 kB
Formato
Adobe PDF
|
391.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


