In this note, we discuss about the regularity of the free boundary for the solutions of the one-phase Stefan problem. We start by recalling the classical results achieved by I. Athanasopoulos, L. Caffarelli, and S. Salsa in the more general setting of the two-phase Stefan problem. Next, we focus on some recent achievements on the subject, obtained with Daniela De Silva and Ovidiu Savin starting from the techniques already known for one-phase problems governed by elliptic operators.

Forcillo Nicolò (2021). Regularity of the free boundary in the one-phase Stefan problem: a recent approach. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 12(1), 122-140 [10.6092/issn.2240-2829/14189].

Regularity of the free boundary in the one-phase Stefan problem: a recent approach

Forcillo Nicolò
Primo
2021

Abstract

In this note, we discuss about the regularity of the free boundary for the solutions of the one-phase Stefan problem. We start by recalling the classical results achieved by I. Athanasopoulos, L. Caffarelli, and S. Salsa in the more general setting of the two-phase Stefan problem. Next, we focus on some recent achievements on the subject, obtained with Daniela De Silva and Ovidiu Savin starting from the techniques already known for one-phase problems governed by elliptic operators.
2021
Forcillo Nicolò (2021). Regularity of the free boundary in the one-phase Stefan problem: a recent approach. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 12(1), 122-140 [10.6092/issn.2240-2829/14189].
Forcillo Nicolò
File in questo prodotto:
File Dimensione Formato  
14189-Article Text-53380-1-10-20220105.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 369.62 kB
Formato Adobe PDF
369.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/845667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact