The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative transfer as the combined effect of Doppler and pressure broadenings is known as the Voigt profile function. Because of its convolution integral representation, the Voigt profile can be interpreted as the probability density function of the sum of two independent random variables with Gaussian density (due to the Doppler effect) and Lorentzian density (due to the pressure effect). Since these densities belong to the class of symmetric Lévy stable distributions, a probabilistic generalization is proposed as the convolution of two arbitrary symmetric Lévy densities. We study the case when the widths of the distributions considered depend on a scale factor that is representative of spatial inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic generalization of the Voigt function are here introduced and interpreted as generalized diffusion equations containing two Riesz space-fractional derivatives, thus classified as space-fractional diffusion equations of double order.

Evolution equations of the probabilistic generalization of the Voigt profile function / G. PAGNINI; F.MAINARDI. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 233:(2010), pp. 1590-1595. [10.1016/j.cam.2008.04.040]

Evolution equations of the probabilistic generalization of the Voigt profile function

MAINARDI, FRANCESCO
2010

Abstract

The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative transfer as the combined effect of Doppler and pressure broadenings is known as the Voigt profile function. Because of its convolution integral representation, the Voigt profile can be interpreted as the probability density function of the sum of two independent random variables with Gaussian density (due to the Doppler effect) and Lorentzian density (due to the pressure effect). Since these densities belong to the class of symmetric Lévy stable distributions, a probabilistic generalization is proposed as the convolution of two arbitrary symmetric Lévy densities. We study the case when the widths of the distributions considered depend on a scale factor that is representative of spatial inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic generalization of the Voigt function are here introduced and interpreted as generalized diffusion equations containing two Riesz space-fractional derivatives, thus classified as space-fractional diffusion equations of double order.
2010
Evolution equations of the probabilistic generalization of the Voigt profile function / G. PAGNINI; F.MAINARDI. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 233:(2010), pp. 1590-1595. [10.1016/j.cam.2008.04.040]
G. PAGNINI; F.MAINARDI
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/84557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact