Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In this work we address both theoretically and experimentally the steplength selection and provide results on a real application such as a rolling contact problem.
Solving Nonlinear Systems of Equations Via Spectral Residual Methods: Stepsize Selection and Applications
Porcelli M.
;
2022
Abstract
Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In this work we address both theoretically and experimentally the steplength selection and provide results on a real application such as a rolling contact problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Articolo_BB_treni_R2_final_12Oct21_VERSIONE_ACCETTATA_IRIS.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.