: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease without any effective treatment. Protein TDP-43 is a pathological hallmark of ALS in both sporadic and familiar patients. Post-translational modifications of TDP-43 promote its aggregation in the cytoplasm. Tau-Tubulin kinase (TTBK1) phosphorylates TDP-43 in cellular and animal models; thus, TTBK1 inhibitors emerge as a promising therapeutic strategy for ALS. The design, synthesis, biological evaluation, kinase-ligand complex structure determination, and molecular modeling studies confirmed novel pyrrolopyrimidine derivatives as valuable inhibitors for further development. Moreover, compound 29 revealed good brain penetration in vivo and was able to reduce TDP-43 phosphorylation not only in cell cultures but also in the spinal cord of transgenic TDP-43 mice. A shift to M2 anti-inflammatory microglia was also demonstrated in vivo. Both these activities led to motor neuron preservation in mice, proposing pyrrolopyrimidine 29 as a valuable lead compound for future ALS therapy.
Nozal, V., Martínez-González, L., Gomez-Almeria, M., Gonzalo-Consuegra, C., Santana, P., Chaikuad, A., et al. (2022). TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy. JOURNAL OF MEDICINAL CHEMISTRY, Online ahead of print., 1-23 [10.1021/acs.jmedchem.1c01942].
TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy
Petralla, SabrinaMembro del Collaboration Group
;Monti, BarbaraMembro del Collaboration Group
;
2022
Abstract
: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease without any effective treatment. Protein TDP-43 is a pathological hallmark of ALS in both sporadic and familiar patients. Post-translational modifications of TDP-43 promote its aggregation in the cytoplasm. Tau-Tubulin kinase (TTBK1) phosphorylates TDP-43 in cellular and animal models; thus, TTBK1 inhibitors emerge as a promising therapeutic strategy for ALS. The design, synthesis, biological evaluation, kinase-ligand complex structure determination, and molecular modeling studies confirmed novel pyrrolopyrimidine derivatives as valuable inhibitors for further development. Moreover, compound 29 revealed good brain penetration in vivo and was able to reduce TDP-43 phosphorylation not only in cell cultures but also in the spinal cord of transgenic TDP-43 mice. A shift to M2 anti-inflammatory microglia was also demonstrated in vivo. Both these activities led to motor neuron preservation in mice, proposing pyrrolopyrimidine 29 as a valuable lead compound for future ALS therapy.File | Dimensione | Formato | |
---|---|---|---|
Accepted Manuscript TDP43 modulation by tau tubulin kinase 1 inhibitors A new avenue for future.pdf
Open Access dal 28/01/2023
Descrizione: Accepted Manuscript+cover
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione
8.3 MB
Formato
Adobe PDF
|
8.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.