The algebraic characterization of dual univariate interpolating subdivision schemes is investigated. Specifically, we provide a constructive approach for finding dual univariate interpolating subdivision schemes based on the solutions of certain associated polynomial equations. The proposed approach also makes it possible to identify conditions for the existence of the sought schemes.

Gemignani, L., Romani, L., Viscardi, A. (2022). Bezout-like polynomial equations associated with dual univariate interpolating subdivision schemes. ADVANCES IN COMPUTATIONAL MATHEMATICS, 48(1), 1-27 [10.1007/s10444-021-09912-4].

Bezout-like polynomial equations associated with dual univariate interpolating subdivision schemes

Romani, Lucia;Viscardi, Alberto
2022

Abstract

The algebraic characterization of dual univariate interpolating subdivision schemes is investigated. Specifically, we provide a constructive approach for finding dual univariate interpolating subdivision schemes based on the solutions of certain associated polynomial equations. The proposed approach also makes it possible to identify conditions for the existence of the sought schemes.
2022
Gemignani, L., Romani, L., Viscardi, A. (2022). Bezout-like polynomial equations associated with dual univariate interpolating subdivision schemes. ADVANCES IN COMPUTATIONAL MATHEMATICS, 48(1), 1-27 [10.1007/s10444-021-09912-4].
Gemignani, Luca; Romani, Lucia; Viscardi, Alberto
File in questo prodotto:
File Dimensione Formato  
bezout_final.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 801.38 kB
Formato Adobe PDF
801.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/844091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact