In this paper we present a differential approach to photopolarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.

Tozza, S., Smith, W.A.P., Zhu, D., Ramamoorthi, R., Hancock, E.R. (2017). Linear differential constraints for photo-polarimetric height estimation. IEEE Computer Society [10.1109/ICCV.2017.250].

Linear differential constraints for photo-polarimetric height estimation

Tozza, Silvia
Primo
;
2017

Abstract

In this paper we present a differential approach to photopolarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.
2017
2017 IEEE International Conference on Computer Vision ICCV 2017
2298
2306
Tozza, S., Smith, W.A.P., Zhu, D., Ramamoorthi, R., Hancock, E.R. (2017). Linear differential constraints for photo-polarimetric height estimation. IEEE Computer Society [10.1109/ICCV.2017.250].
Tozza, Silvia; Smith, William A. P.; Zhu, Dizhong; Ramamoorthi, Ravi; Hancock, Edwin R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/844060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 22
social impact