We will show a local solvability result for a class of degenerate second order linear partial differential operators with a complex subprincipal symbol. Due to the form of the operators in the class the subprincipal symbol is invariantly defined and we shall give sufficient conditions for the local solvability to hold involving the real and the imaginary part of the latter. Under suitable conditions we will prove that the class under consideration is L2 to L2 locally solvable.

Sufficient conditions for local solvability of some degenerate pdo with complex subprincipal symbol

Federico S.
2019

Abstract

We will show a local solvability result for a class of degenerate second order linear partial differential operators with a complex subprincipal symbol. Due to the form of the operators in the class the subprincipal symbol is invariantly defined and we shall give sufficient conditions for the local solvability to hold involving the real and the imaginary part of the latter. Under suitable conditions we will prove that the class under consideration is L2 to L2 locally solvable.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/844006
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact