Torlon® is a thermally and plasticization-resistant polyamide imide characterized by low gas permeability at room temperature. In this work, we aimed at improving the polymer performance in the thermally-enhanced He/CO2 and H2/CO2 separations, by compounding Torlon® with a highly permeable filler, ZIF-8, to fabricate Mixed Matrix Membranes (MMMs). The effect of filler loading, gas size, and temperature on the MMMs permeability, diffusivity, and selectivity was investigated. The He permeability increased by a factor of 3, while the He/CO2 selectivity decreased by a factor of 2, when adding 25 wt % of ZIF-8 at 65◦C to Torlon®; similar trends were observed for the case of H2. The MMMs permeability and size-selectivity were both enhanced by temperature. The behavior of MMMs is intermediate between the pure polymer and pure filler ones, and can be described with models for composites, indicating that such materials have a good polymer/filler adhesion and their performance could be tailored by acting on the formulation. The behavior observed is in line with previous investigations on MMMs based on glassy polymers and ZIF-8, in similar conditions, and indicates that ZIF-8 can be used as a polymer additive when the permeability is a controlling aspect, with a proper choice of loading and operative temperature.
De Pascale M., Benedetti F.M., Lasseuguette E., Ferrari M.-C., Papchenko K., Degli Esposti M., et al. (2021). Mixed matrix membranes based on torlon® and ZIF-8 for high-temperature, size-selective gas separations. MEMBRANES, 11(12), 1-19 [10.3390/membranes11120982].
Mixed matrix membranes based on torlon® and ZIF-8 for high-temperature, size-selective gas separations
De Pascale M.Primo
;Benedetti F. M.Secondo
;Ferrari M. -C.;Papchenko K.;Degli Esposti M.;Fabbri P.Penultimo
;De Angelis M. G.
Ultimo
2021
Abstract
Torlon® is a thermally and plasticization-resistant polyamide imide characterized by low gas permeability at room temperature. In this work, we aimed at improving the polymer performance in the thermally-enhanced He/CO2 and H2/CO2 separations, by compounding Torlon® with a highly permeable filler, ZIF-8, to fabricate Mixed Matrix Membranes (MMMs). The effect of filler loading, gas size, and temperature on the MMMs permeability, diffusivity, and selectivity was investigated. The He permeability increased by a factor of 3, while the He/CO2 selectivity decreased by a factor of 2, when adding 25 wt % of ZIF-8 at 65◦C to Torlon®; similar trends were observed for the case of H2. The MMMs permeability and size-selectivity were both enhanced by temperature. The behavior of MMMs is intermediate between the pure polymer and pure filler ones, and can be described with models for composites, indicating that such materials have a good polymer/filler adhesion and their performance could be tailored by acting on the formulation. The behavior observed is in line with previous investigations on MMMs based on glassy polymers and ZIF-8, in similar conditions, and indicates that ZIF-8 can be used as a polymer additive when the permeability is a controlling aspect, with a proper choice of loading and operative temperature.File | Dimensione | Formato | |
---|---|---|---|
Mixed Matrix Membranes Based on Torlon® and ZIF-8 for High-Temperature, Size-Selective Gas Separations.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.