The current study aimed: (i) to external validate total body water (TBW) and extracellular water (ECW) derived from athlete and non-athlete predictive equations using radioisotope dilution techniques as a reference criterion in male and female athletes; (ii) in a larger sample, to determine the agreement between specific and generalized equations when estimating body fluids in male and female athletes practicing different sports. A total of 1371 athletes (men: n = 921, age 23.9 ± 1.4 y; women: n = 450, age 27.3 ± 6.8 y) participated in this study. All athletes underwent bioelectrical impedance analyses, while TBW and ECW were assessed with dilution techniques in a subgroup of 185 participants (men: n = 132, age 21.7 ± 5.1 y; women: n = 53, age 20.3 ± 4.5 y). Two specific and eight generalized predictive equations were tested. Compared to the criterion methods, no mean bias was observed using the athlete-specific equations for TBW and ECW (−0.32 to 0.05, p > 0.05) and the coefficient of determination ranged from R2 = 0.83 to 0.94. The majority of the generalized predictive equations underestimated TBW and ECW (p < 0.05); R2 ranged from 0.66 to 0.89. In the larger sample, all the generalized equations showed lower TBW and ECW values (ranging from −6.58 to −0.19, p < 0.05) than specific predictive equations; except for TBW in female power/velocity (one equation) athletes and team sport (two equations). The use of generalized BIA-based equations leads to an underestimation of TBW, and ECW compared to athlete-specific predictive equations. Additionally, the larger sample indicates that generalized equations overall provided lower TBW and ECW compared to the athlete-specific equations.
Coratella G., Campa F., Matias C.N., Toselli S., Koury J.C., Andreoli A., et al. (2021). Generalized bioelectric impedance-based equations underestimate body fluids in athletes. SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 31(11), 2123-2132 [10.1111/sms.14033].
Generalized bioelectric impedance-based equations underestimate body fluids in athletes
Campa F.
;Toselli S.;
2021
Abstract
The current study aimed: (i) to external validate total body water (TBW) and extracellular water (ECW) derived from athlete and non-athlete predictive equations using radioisotope dilution techniques as a reference criterion in male and female athletes; (ii) in a larger sample, to determine the agreement between specific and generalized equations when estimating body fluids in male and female athletes practicing different sports. A total of 1371 athletes (men: n = 921, age 23.9 ± 1.4 y; women: n = 450, age 27.3 ± 6.8 y) participated in this study. All athletes underwent bioelectrical impedance analyses, while TBW and ECW were assessed with dilution techniques in a subgroup of 185 participants (men: n = 132, age 21.7 ± 5.1 y; women: n = 53, age 20.3 ± 4.5 y). Two specific and eight generalized predictive equations were tested. Compared to the criterion methods, no mean bias was observed using the athlete-specific equations for TBW and ECW (−0.32 to 0.05, p > 0.05) and the coefficient of determination ranged from R2 = 0.83 to 0.94. The majority of the generalized predictive equations underestimated TBW and ECW (p < 0.05); R2 ranged from 0.66 to 0.89. In the larger sample, all the generalized equations showed lower TBW and ECW values (ranging from −6.58 to −0.19, p < 0.05) than specific predictive equations; except for TBW in female power/velocity (one equation) athletes and team sport (two equations). The use of generalized BIA-based equations leads to an underestimation of TBW, and ECW compared to athlete-specific predictive equations. Additionally, the larger sample indicates that generalized equations overall provided lower TBW and ECW compared to the athlete-specific equations.File | Dimensione | Formato | |
---|---|---|---|
Scandinavian Med Sci Sports 2021.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
179.69 kB
Formato
Adobe PDF
|
179.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.