We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of (41)K and (87)Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to the thermal distribution of the atoms and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. This work represents a required step toward Bose-Einstein condensates of dipolar molecules.
Weber C., Barontini G., Catani J., Thalhammer G., Inguscio M., Minardi F. (2008). Association of ultracold double-species bosonic molecules. PHYSICAL REVIEW A, 78(6), 061601-1-061601-1 [10.1103/PhysRevA.78.061601].
Association of ultracold double-species bosonic molecules
Minardi F.
2008
Abstract
We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of (41)K and (87)Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to the thermal distribution of the atoms and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. This work represents a required step toward Bose-Einstein condensates of dipolar molecules.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.