The design and development process for the Square Kilometre Array (SKA) radio telescope's Low Frequency Aperture Array component was progressed during the SKA pre-construction phase by an international consortium, with the goal of meeting requirements for a critical design review. As part of the development process a full-sized prototype SKA Low 'station' was deployed-the Aperture Array Verification System 1 (AAVS1). We provide a system overview and describe the commissioning results of AAVS1, which is a low frequency radio telescope with 256 dual-polarisation log-periodic dipole antennas working as a phased array. A detailed system description is provided, including an in-depth overview of relevant sub-systems, ranging from hardware, firmware, software, calibration, and control sub-systems. Early commissioning results cover initial bootstrapping, array calibration, stability testing, beam-forming, and on-sky sensitivity validation. Lessons learned are presented, along with future developments.

The Aperture Array Verification System 1: System overview and early commissioning results

Nanni J.;Tartarini G.;
2021

Abstract

The design and development process for the Square Kilometre Array (SKA) radio telescope's Low Frequency Aperture Array component was progressed during the SKA pre-construction phase by an international consortium, with the goal of meeting requirements for a critical design review. As part of the development process a full-sized prototype SKA Low 'station' was deployed-the Aperture Array Verification System 1 (AAVS1). We provide a system overview and describe the commissioning results of AAVS1, which is a low frequency radio telescope with 256 dual-polarisation log-periodic dipole antennas working as a phased array. A detailed system description is provided, including an in-depth overview of relevant sub-systems, ranging from hardware, firmware, software, calibration, and control sub-systems. Early commissioning results cover initial bootstrapping, array calibration, stability testing, beam-forming, and on-sky sensitivity validation. Lessons learned are presented, along with future developments.
2021
Benthem P.; Wayth R.; De Lera Acedo E.; Zarb Adami K.; Alderighi M.; Belli C.; Bolli P.; Booler T.; Borg J.; Broderick J.W.; Chiarucci S.; Chiello R.; Ciani L.; Comoretto G.; Crosse B.; Davidson D.; Demarco A.; Emrich D.; Van Es A.; Fierro D.; Faulkner A.; Gerbers M.; Razavi-Ghods N.; Hall P.; Horsley L.; Juswardy B.; Kenney D.; Steele K.; Magro A.; Mattana A.; Mckinley B.; Monari J.; Naldi G.; Nanni J.; Di Ninni P.; Paonessa F.; Perini F.; Poloni M.; Pupillo G.; Rusticelli S.; Schiaffino M.; Schilliro F.; Schnetler H.; Singuaroli R.; Sokolowski M.; Sutinjo A.; Tartarini G.; Ung D.; Bij De Vaate J.G.; Virone G.; Walker M.; Waterson M.; Wijnholds S.J.; Williams A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/842708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact