In this work we consider an example of a linear time degenerate Schrödinger operator. We show that with the appropriate assumptions the operator satisfies a Kato smoothing effect. We also show that the solutions to the nonlinear initial value problems involving this operator and polynomial derivative nonlinearities are locally well-posed and their solutions also satisfy the same smoothing estimates as the linear solutions.

Federico, S., Staffilani, G. (2021). Smoothing effect for time-degenerate Schrödinger operators. JOURNAL OF DIFFERENTIAL EQUATIONS, 298, 205-247 [10.1016/j.jde.2021.07.006].

Smoothing effect for time-degenerate Schrödinger operators

Federico, Serena
;
Staffilani, Gigliola
2021

Abstract

In this work we consider an example of a linear time degenerate Schrödinger operator. We show that with the appropriate assumptions the operator satisfies a Kato smoothing effect. We also show that the solutions to the nonlinear initial value problems involving this operator and polynomial derivative nonlinearities are locally well-posed and their solutions also satisfy the same smoothing estimates as the linear solutions.
2021
Federico, S., Staffilani, G. (2021). Smoothing effect for time-degenerate Schrödinger operators. JOURNAL OF DIFFERENTIAL EQUATIONS, 298, 205-247 [10.1016/j.jde.2021.07.006].
Federico, Serena; Staffilani, Gigliola
File in questo prodotto:
File Dimensione Formato  
2001.06708.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 445.08 kB
Formato Adobe PDF
445.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/842243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact