Local ensemble transform Kalman filter (LETKF) data assimilation, three-dimensional variational data assimilation (3DVAR), and four-dimensional variational data assimilation (4DVAR) schemes are implemented in a quasigeostrophic channel model. Their advantages and disadvantages are compared to assess their use in practical applications. LETKF and 4DVAR, which take into account the flow-dependent errors, outperform 3DVAR under a perfect model scenario. Given the same observations, LETKF produces more accurate analyses than 4DVAR with a 12-h window by effectively correcting the fast-growing errors with the flow-dependent background error covariance. Even though 4DVAR performance benefits substantially from using a longer assimilation window, LETKF is also able to achieve a satisfactory accuracy compared to the 24-h 4DVAR analyses. It is shown that the advantage of the LETKF over 3DVAR is a result of both the ensemble averaging and the information about the "errors of the day" provided by the ensemble. The analysis corrections at the end of the 12-h assimilation window are similar for LETKF and the 12-h window 4DVAR, and they both resemble bred vectors. At the beginning of the assimilation window, LETKF analysis corrections obtained using a no-cost smoother also resemble the corresponding bred vectors, whereas the 4DVAR corrections are significantly different with much larger horizontal scales. © 2009 American Meteorological Society.

Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model / Yang S.-C.; Corazza M.; Carrassi A.; Kalnay E.; Miyoshi T.. - In: MONTHLY WEATHER REVIEW. - ISSN 0027-0644. - STAMPA. - 137:2(2009), pp. 693-709. [10.1175/2008MWR2396.1]

Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model

Carrassi A.;
2009

Abstract

Local ensemble transform Kalman filter (LETKF) data assimilation, three-dimensional variational data assimilation (3DVAR), and four-dimensional variational data assimilation (4DVAR) schemes are implemented in a quasigeostrophic channel model. Their advantages and disadvantages are compared to assess their use in practical applications. LETKF and 4DVAR, which take into account the flow-dependent errors, outperform 3DVAR under a perfect model scenario. Given the same observations, LETKF produces more accurate analyses than 4DVAR with a 12-h window by effectively correcting the fast-growing errors with the flow-dependent background error covariance. Even though 4DVAR performance benefits substantially from using a longer assimilation window, LETKF is also able to achieve a satisfactory accuracy compared to the 24-h 4DVAR analyses. It is shown that the advantage of the LETKF over 3DVAR is a result of both the ensemble averaging and the information about the "errors of the day" provided by the ensemble. The analysis corrections at the end of the 12-h assimilation window are similar for LETKF and the 12-h window 4DVAR, and they both resemble bred vectors. At the beginning of the assimilation window, LETKF analysis corrections obtained using a no-cost smoother also resemble the corresponding bred vectors, whereas the 4DVAR corrections are significantly different with much larger horizontal scales. © 2009 American Meteorological Society.
2009
Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model / Yang S.-C.; Corazza M.; Carrassi A.; Kalnay E.; Miyoshi T.. - In: MONTHLY WEATHER REVIEW. - ISSN 0027-0644. - STAMPA. - 137:2(2009), pp. 693-709. [10.1175/2008MWR2396.1]
Yang S.-C.; Corazza M.; Carrassi A.; Kalnay E.; Miyoshi T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/841464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact