We present the first annotated corpus for multilingual analysis of potentially unfair clauses in online Terms of Service. The data set comprises a total of 100 contracts, obtained from 25 documents annotated in four different languages: English, German, Italian, and Polish. For each contract, potentially unfair clauses for the consumer are annotated, for nine different unfairness categories. We show how a simple yet efficient annotation projection technique based on sentence embeddings could be used to automatically transfer annotations across languages.

Kasper Drawzeski, A.G. (2021). A Corpus for Multilingual Analysis of Online Terms of Service. Punta Cana : Association for Computational Linguistics [10.18653/v1/2021.nllp-1.1].

A Corpus for Multilingual Analysis of Online Terms of Service

Andrea Galassi
;
Francesca Lagioia
;
Giovanni Sartor;Paolo Torroni
2021

Abstract

We present the first annotated corpus for multilingual analysis of potentially unfair clauses in online Terms of Service. The data set comprises a total of 100 contracts, obtained from 25 documents annotated in four different languages: English, German, Italian, and Polish. For each contract, potentially unfair clauses for the consumer are annotated, for nine different unfairness categories. We show how a simple yet efficient annotation projection technique based on sentence embeddings could be used to automatically transfer annotations across languages.
2021
Proceedings of the Natural Legal Language Processing Workshop 2021
1
8
Kasper Drawzeski, A.G. (2021). A Corpus for Multilingual Analysis of Online Terms of Service. Punta Cana : Association for Computational Linguistics [10.18653/v1/2021.nllp-1.1].
Kasper Drawzeski, Andrea Galassi, Agnieszka Jablonowska, Francesca Lagioia, Marco Lippi, Hans Wolfgang Micklitz, Giovanni Sartor, Giacomo Tagiuri, ...espandi
File in questo prodotto:
File Dimensione Formato  
A Corpus for Multilingual Analysis of Online Terms of Service.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 170.44 kB
Formato Adobe PDF
170.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/841269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact