The real-time analysis of Big Data streams is a terrific resource for transforming data into value. For this, Big Data technologies for smart processing of massive data streams are available, but the facilities they offer are often too raw to be effectively exploited by analysts. RAM3S (Realtime Analysis of Massive MultiMedia Streams) is a framework that acts as a middleware software layer between multimedia stream analysis techniques and Big Data streaming platforms, so as to facilitate the implementation of the former on top of the latter. RAM3S has been proven helpful in simplifying the deployment of non-parallel techniques to streaming platforms, such as Apache Storm or Apache Flink. In this paper, we show how RAM3S has been updated to incorporate novel stream processing platforms, such as Apache Samza, and to be able to communicate with different message brokers, such as Apache Kafka. Abstracting from the message broker also provides us with the ability to pipeline several RAM3S instances that can, therefore, perform different processing tasks. This represents a richer model for stream analysis with respect to the one already available in the original RAM3S version. The generality of this new RAM3S version is demonstrated through experiments conducted on three different multimedia applications, proving that RAM3S is a formidable asset for enabling efficient and effective Data Mining and Machine Learning on multimedia data streams.
Ilaria Bartolini, Marco Patella (2021). The Metamorphosis (of RAM3S). APPLIED SCIENCES, 11(24), 1-19 [10.3390/app112411584].
The Metamorphosis (of RAM3S)
Ilaria Bartolini
;Marco Patella
2021
Abstract
The real-time analysis of Big Data streams is a terrific resource for transforming data into value. For this, Big Data technologies for smart processing of massive data streams are available, but the facilities they offer are often too raw to be effectively exploited by analysts. RAM3S (Realtime Analysis of Massive MultiMedia Streams) is a framework that acts as a middleware software layer between multimedia stream analysis techniques and Big Data streaming platforms, so as to facilitate the implementation of the former on top of the latter. RAM3S has been proven helpful in simplifying the deployment of non-parallel techniques to streaming platforms, such as Apache Storm or Apache Flink. In this paper, we show how RAM3S has been updated to incorporate novel stream processing platforms, such as Apache Samza, and to be able to communicate with different message brokers, such as Apache Kafka. Abstracting from the message broker also provides us with the ability to pipeline several RAM3S instances that can, therefore, perform different processing tasks. This represents a richer model for stream analysis with respect to the one already available in the original RAM3S version. The generality of this new RAM3S version is demonstrated through experiments conducted on three different multimedia applications, proving that RAM3S is a formidable asset for enabling efficient and effective Data Mining and Machine Learning on multimedia data streams.File | Dimensione | Formato | |
---|---|---|---|
applsci-11-11584.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.