We investigate properties of differential and difference operators annihilating certain finite-dimensional spaces of exponential functions in two variables that are connected to the representation of real-valued trigonometric and hyperbolic functions. Although exponential functions appear in a variety of contexts, the motivation behind this technical note comes from considering subdivision schemes where annihilation operators play an important role. Indeed, subdivision schemes with the capability of preserving exponential functions can be used to obtain an exact description of surfaces parametrized in terms of trigonometric and hyperbolic functions, and annihilation operators are useful to automatically detect the frequencies of such functions.

Conti C., Lopez-Urena S., Romani L. (2022). Annihilation operators for exponential spaces in subdivision. APPLIED MATHEMATICS AND COMPUTATION, 418, 1-7 [10.1016/j.amc.2021.126796].

Annihilation operators for exponential spaces in subdivision

Romani L.
2022

Abstract

We investigate properties of differential and difference operators annihilating certain finite-dimensional spaces of exponential functions in two variables that are connected to the representation of real-valued trigonometric and hyperbolic functions. Although exponential functions appear in a variety of contexts, the motivation behind this technical note comes from considering subdivision schemes where annihilation operators play an important role. Indeed, subdivision schemes with the capability of preserving exponential functions can be used to obtain an exact description of surfaces parametrized in terms of trigonometric and hyperbolic functions, and annihilation operators are useful to automatically detect the frequencies of such functions.
2022
Conti C., Lopez-Urena S., Romani L. (2022). Annihilation operators for exponential spaces in subdivision. APPLIED MATHEMATICS AND COMPUTATION, 418, 1-7 [10.1016/j.amc.2021.126796].
Conti C.; Lopez-Urena S.; Romani L.
File in questo prodotto:
File Dimensione Formato  
postprint_AMC22.pdf

Open Access dal 26/11/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/840671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact