Given the significant interest in Volume I, it was decided to launch Volume II of the Research Topic “Avian Muscle Development and Growth Mechanisms: Association With Muscle Myopathies and Meat Quality.” The broiler industry is still facing an unsustainable occurrence of growth-related muscular abnormalities that mainly affect fast-growing genotypes selected for high growth rate and breast yield. From their onset, research interest in these issues continues as proven by the temporal trend of published papers during the past decade (Figure 1). Even if meat affected by white striping, wooden breast, and spaghetti meat abnormalities is not harmful for human nutrition, these conditions impair quality traits of both raw and processed meat products causing severe economic losses in the poultry industry worldwide (Petracci et al., 2019; Velleman, 2019). Since the Research Topic of “Avian Muscle Development and Growth Mechanisms: Association With Muscle Myopathies and Meat Quality” is quite diverse, contributions in this second volume reflect the broad scope of areas of investigation related to muscle growth and development with 11 original research papers and one mini-review from prominent scientists in the sector. We hope that this collection will instigate novel questions in the minds of our readers and will be helpful in facilitating the development of the field.

Massimiliano Petracci, Sandra G. Velleman (2021). Avian muscle development and growth mechanisms: association with muscle myopathies and meat quality Volume II. Lausanne : Frontiers Media SA [10.3389/978-2-88971-759-0].

Avian muscle development and growth mechanisms: association with muscle myopathies and meat quality Volume II

Massimiliano Petracci
Primo
Writing – Original Draft Preparation
;
2021

Abstract

Given the significant interest in Volume I, it was decided to launch Volume II of the Research Topic “Avian Muscle Development and Growth Mechanisms: Association With Muscle Myopathies and Meat Quality.” The broiler industry is still facing an unsustainable occurrence of growth-related muscular abnormalities that mainly affect fast-growing genotypes selected for high growth rate and breast yield. From their onset, research interest in these issues continues as proven by the temporal trend of published papers during the past decade (Figure 1). Even if meat affected by white striping, wooden breast, and spaghetti meat abnormalities is not harmful for human nutrition, these conditions impair quality traits of both raw and processed meat products causing severe economic losses in the poultry industry worldwide (Petracci et al., 2019; Velleman, 2019). Since the Research Topic of “Avian Muscle Development and Growth Mechanisms: Association With Muscle Myopathies and Meat Quality” is quite diverse, contributions in this second volume reflect the broad scope of areas of investigation related to muscle growth and development with 11 original research papers and one mini-review from prominent scientists in the sector. We hope that this collection will instigate novel questions in the minds of our readers and will be helpful in facilitating the development of the field.
2021
168
9782889717590
Massimiliano Petracci, Sandra G. Velleman (2021). Avian muscle development and growth mechanisms: association with muscle myopathies and meat quality Volume II. Lausanne : Frontiers Media SA [10.3389/978-2-88971-759-0].
Massimiliano Petracci; Sandra G. Velleman
File in questo prodotto:
File Dimensione Formato  
9782889717590_compressed.pdf

accesso aperto

Descrizione: reprint
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 7.92 MB
Formato Adobe PDF
7.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/840441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact