The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN com- pilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particu- lar, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replace- ments of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH 3 F, GeH 4 , CS 2 , CH 3 I and NF 3 . Many new vibrational bands were added, extending the spectral cov- erage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening param- eters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.

The HITRAN2020 molecular spectroscopic database / Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.–M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Cane', E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.–M.; Horneman, V.–M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia–Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.. - In: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER. - ISSN 0022-4073. - STAMPA. - 277:(2022), pp. 107949.1-107949.82. [10.1016/j.jqsrt.2021.107949]

The HITRAN2020 molecular spectroscopic database

Tran, H.;Cane', E.;Melosso, M.;Tamassia, F.;
2022

Abstract

The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN com- pilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particu- lar, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replace- ments of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH 3 F, GeH 4 , CS 2 , CH 3 I and NF 3 . Many new vibrational bands were added, extending the spectral cov- erage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening param- eters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
2022
The HITRAN2020 molecular spectroscopic database / Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.–M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Cane', E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.–M.; Horneman, V.–M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia–Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.. - In: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER. - ISSN 0022-4073. - STAMPA. - 277:(2022), pp. 107949.1-107949.82. [10.1016/j.jqsrt.2021.107949]
Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.–M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Cane', E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.–M.; Horneman, V.–M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia–Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022407321004416-main_compressed.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/839395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 787
  • ???jsp.display-item.citation.isi??? 646
social impact