Prognostic assessment in patients with HCC remains an extremely difficult clinical task due to the complexity of this cancer where tumour characteristics interact with degree of liver dysfunction, patient general health status, and a large span of available treatment options. Several prognostic systems have been proposed in the last three decades, both from the Asian and European/North American countries. Prognostic scores, such as the CLIP score and the recent MESH score, have been generated on a solid statistical basis from real life population data, while staging systems, such as the BCLC scheme and the recent CNLC classification, have been created by experts according to recent HCC prognostic evidences from the literature. A third category includes combined prognostic systems that can be used both as prognostic scores and staging systems. A recent example is the ITA.LI.CA prognostic system including either a prognostic score and a simplified staging system. This review focuses first on an overview of the main prognostic systems for HCC classified according to the above three categories, and, second, on a comprehensive description of the methodology required for a correct comparison between different systems in terms of prognostic performance. In this second section the main studies in the literature comparing different prognostic systems are described in detail. Lastly, a formal comparison between the last prognostic systems proposed for each of the above three categories is performed using a large Italian database including 6882 HCC patients in order to concretely apply the comparison rules previously described.

Overview of prognostic systems for hepatocellular carcinoma and ITA.LI.CA external validation of MESH and CNLC classifications

Piscaglia F.;Trevisani F.;Cucchetti A.;Marasco G.;Renzulli M.;Azzaroli F.;Vidili G.;Zoli M.
2021

Abstract

Prognostic assessment in patients with HCC remains an extremely difficult clinical task due to the complexity of this cancer where tumour characteristics interact with degree of liver dysfunction, patient general health status, and a large span of available treatment options. Several prognostic systems have been proposed in the last three decades, both from the Asian and European/North American countries. Prognostic scores, such as the CLIP score and the recent MESH score, have been generated on a solid statistical basis from real life population data, while staging systems, such as the BCLC scheme and the recent CNLC classification, have been created by experts according to recent HCC prognostic evidences from the literature. A third category includes combined prognostic systems that can be used both as prognostic scores and staging systems. A recent example is the ITA.LI.CA prognostic system including either a prognostic score and a simplified staging system. This review focuses first on an overview of the main prognostic systems for HCC classified according to the above three categories, and, second, on a comprehensive description of the methodology required for a correct comparison between different systems in terms of prognostic performance. In this second section the main studies in the literature comparing different prognostic systems are described in detail. Lastly, a formal comparison between the last prognostic systems proposed for each of the above three categories is performed using a large Italian database including 6882 HCC patients in order to concretely apply the comparison rules previously described.
Vitale A.; Farinati F.; Finotti M.; Di Renzo C.; Brancaccio G.; Piscaglia F.; Cabibbo G.; Caturelli E.; Missale G.; Marra F.; Sacco R.; Giannini E.G.; Trevisani F.; Cillo U.; Bhoori S.; Borzio M.; Burra P.; Casadei Gardini A.; Carrai P.; Conti F.; Cozzolongo R.; Cucchetti A.; D'ambrosio R.; Dell'unto C.; De Matthaeis N.; Di Costanzo G.G.; Di Sandro S.; Famularo S.; Foschi F.G.; Fucilli F.; Galati G.; Gambato M.; Gasbarrini A.; Giuliante F.; Ghinolfi D.; Grieco A.; Gruttadauria S.; Guarino M.; Iavarone M.; Kostandini A.; Lai Q.; Lenci I.; Levi Sandri G.V.; Losito F.; Lupo L.G.; Marasco G.; Manzia T.M.; Mazzocato S.; Masarone M.; Melandro F.; Mescoli C.; Miele L.; Morisco F.; Muley M.; Nicolini D.; Pagano D.; Persico M.; Pompili M.; Ponziani F.R.; Pravisani R.; Rapaccini G.L.; Rendina M.; Renzulli M.; Romano F.; Rossi M.; Rreka E.; Russo F.P.; Sangiovanni A.; Sessa A.; Simonetti N.; Sposito C.; Tortora R.; Vigano L.; Vigano M.; Villa E.; Vincenzi V.; Violi P.; Azzaroli F.; Brunetto M.R.; Di Marco A.; Gasbarrini A.; Foschi F.G.; Guarino M.; Masotto A.; Mega A.; Morisco F.; Nardone G.; Oliveri F.; Raimondo G.; Rapaccini G.L.; Svegliati Baroni G.; Vidili G.; Zoli M.
File in questo prodotto:
File Dimensione Formato  
cancers-13-01673.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.02 MB
Formato Adobe PDF
9.02 MB Adobe PDF Visualizza/Apri
cancers-13-01673-s001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 179.26 kB
Formato Adobe PDF
179.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/838935
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 13
social impact