When recorded signals are corrupted by noise on both input and output sides, all standard identification methods give biased parameter estimates, due to the presence of input noise. This report discusses in what situations such a bias is large and, consequently, when the errors-in-variables identification methods are to be preferred.

Söderström, T., Soverini, U. (2021). When are errors-in-variables aspects particularly important to consider in system identification?. Uppsala : Department of Information Technology, Uppsala University.

When are errors-in-variables aspects particularly important to consider in system identification?

Soverini, Umberto
Secondo
2021

Abstract

When recorded signals are corrupted by noise on both input and output sides, all standard identification methods give biased parameter estimates, due to the presence of input noise. This report discusses in what situations such a bias is large and, consequently, when the errors-in-variables identification methods are to be preferred.
2021
Söderström, T., Soverini, U. (2021). When are errors-in-variables aspects particularly important to consider in system identification?. Uppsala : Department of Information Technology, Uppsala University.
Söderström, Torsten; Soverini, Umberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/838836
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact